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ABSTRACT

We sandwich a standard image codec between two neural net-
works: a preprocessor that outputs neural codes, and a post-
processor that reconstructs the image. The neural codes are
compressed as ordinary images by the standard codec. Us-
ing differentiable proxies for both rate and distortion, we de-
velop a rate-distortion optimization framework that trains the
networks to generate neural codes that are efficiently com-
pressible as images. This architecture not only improves rate-
distortion performance for ordinary RGB images, but also en-
ables efficient compression of alternative image types (such
as normal maps of computer graphics) using standard image
codecs. Results demonstrate the effectiveness and flexibil-
ity of neural processing in mapping a variety of input data
modalities to the rigid structure of standard codecs. A sur-
prising result is that the rate-distortion-optimized neural pro-
cessing seamlessly learns to transport color images using a
single-channel (grayscale) codec.

Index Terms— deep learning, image compression

1. INTRODUCTION

We explore a “sandwich” architecture for image compression,
whereby a standardized image codec is placed between a neu-
ral preprocessor and a neural postprocessor. The neural pre-
processor maps the original source image to latent variables
forming neural images. We refer to these as “bottleneck”
images because they are at the locus of the communication
constraint. The bottleneck images are then compressed using
standard codecs (e.g., JPEG, HEVC, VP9 [1, 2, 3]), transmit-
ted, and reconstructed by the standard decoder. The neural
postprocessor converts the reconstructed bottleneck images to
a reconstructed source image suitable for presentation.

We are primarily interested in scenarios where the neural
processors accomplish processing well beyond conventional
tasks like denoising and deblocking (Fig.1). We show that the
proposed sandwich architecture has several advantages: it im-
proves the rate-distortion performance of the standard codec;
it is able to adapt standard codecs to novel image types (e.g.,
normal maps, multi-spectral images, medical images); and it

(a) Original source image −→ (b) Neural code “bottleneck” image

(d) Reconstructed source ←− (c) Reconstructed “bottleneck” image

Fig. 1: Even with a simple codec (here, grayscale JPEG 4:0:0), a
neural sandwich architecture can accomplish unconventional results.
Whereas 4:0:0 usually just stores luminance, the neural preprocessor
is able to encode a full RGB image into a single-channel bottleneck.
The neural code image has low-frequency dither-like patterns that
modulate color information yet also survive JPEG compression. At
the decoding end, the neural postprocessor demodulates the patterns
to recover the original color while also achieving deblocking. Fig.6
shows another example and Fig.7 presents rate-distortion results.

leverages prior hardware and software investments in stan-
dard codecs.

Some prior techniques augment standard codecs with neu-
ral networks. Neural preprocessing addresses denoising [4,
5, 6], and neural postprocessing is commonly used to reduce
blocking and other coding artifacts [7, 8, 9]. In particular,
Kim et al. [10] improve the output of the VVC/H266 intra-
frame codec using residual dense networks (RDNs) and gen-
erative adversarial networks (GANs) to win the CVPR 2020
Learned Image Compression Challenge. In contrast our con-
tribution is to consider a neural sandwich where the standard
codec operates on images in a new space, i.e., a latent space
optimized for a particular class of input data.

End-to-end neural image compression [11]–[18] removes



the standard codec from the sandwich altogether and instead
uses a uniform scalar quantizer for the latent variables in the
bottleneck along with a learned entropy coder. This direction
has culminated in the use of GANs in combination with per-
ceptual distortion measures to reduce the bitrate by a factor
of two or more relative to state-of-art standard codecs with
no perceptual degradation [19]. However, the resulting end-
to-end neural codec has high computational complexity, with
over a million floating-point operations per pixel.

Most neural-network compression results focus on per-
ceptual metrics, trying to generate pictures that look good to a
casual observer. One of our primary applications is the trans-
port of data where the human subjective assessment of the
immediately decoded data is not paramount as the data under-
goes further processing (e.g., images storing surface-normal
vectors used to relight shapes in computer graphics ren-
dering) or undergoes scientific analysis (e.g., hyper-spectral
data.) Hence we focus in this paper on rate-distortion results
where distortion is measured with the `2-norm, though our
results are easily generalizable.

We leverage standard image codecs to perform the heavy
lifting of compression. Such codecs are highly optimized and
often implemented in hardware. The combination of neural
preprocessing and postprocessing around the standard image
codec offers the ability for the standard image codec to carry
latent neural codes, rather than typical images. Not only does
this configuration offer improved rate-distortion performance
for natural RGB images, but it permits great flexibility in tai-
loring the standard codecs to carry alternative image types,
such as normal maps for graphics, multi-spectral images for
remote sensing, and medical images, as well as tailoring to
alternative distortion measures. Some of these aspects are in-
vestigated in the following sections.

2. SANDWICH ARCHITECTURE

The sandwich architecture is shown in Fig.2(a). An original
source image S with one or more full-resolution channels is
mapped by a neural preprocessor into one or more channels
of latent codes. Each channel of latent codes may be full res-
olution or reduced resolution. The channels of latent codes
are grouped into one or more bottleneck images B suitable
for consumption by a standard image codec. The bottleneck
images are compressed by the standard image encoder into
a bitstream which is decompressed by the corresponding de-
coder into reconstructed bottleneck images B̂. The channels
of the reconstructed bottleneck images are then mapped by a
neural postprocessor into a reconstructed source image Ŝ.

The standard image codec in the sandwich is configured
to avoid any color conversion or further subsampling. Thus, it
compresses three full-resolution channels as an image in 4:4:4
format, one full-resolution channel and two half-resolution
channels as an image in 4:2:0 format, and one full-resolution
channel as an image in 4:0:0 (i.e., grayscale) format — all
without color conversion. Other combinations of channels are
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Fig. 2: Sandwich architecture in (a) operation and (b) training.
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Fig. 3: Neural preprocessor and postprocessor.

processed by appropriate grouping.
Fig.3 shows the network architectures for our neural pre-

processor and postprocessor. The upper branch of the net-
work learns pointwise operations, like color conversion, using
a multilayer perceptron (MLP) or equivalently a series of 1×1
2D convolutional layers, while the lower branch uses a U-Net
[20] to take into account more complex spatial context. At
the output of the preprocessor, any half-resolution channels
are obtained by sub-sampling, while at the input of the post-
processor, any half-resolution channels are first upsampled to
full resolution using bilinear interpolation.

Fig. 2(b) shows the setup for training the neural prepro-
cessor and postprocessor using gradient descent. Because
derivatives cannot be back-propagated through the standard
image codec, it is replaced by a differentiable image codec
proxy. For each training example n = 1, . . . , N , the im-
age codec proxy reads the bottleneck image Bn and outputs
the reconstructed bottleneck image B̂n, as a standard image
codec would. It also outputs a real-valued estimate of the
number of bits Rn that the standard image codec would use
to encode Bn. The distortion is measured as the squared `2
error Dn = ||Sn − Ŝn||2 between the original and recon-
structed source images. Together, the rate Rn and distor-
tion Dn are the key elements of the differentiable loss func-
tion. Specifically, the neural preprocessor and postprocessor
are optimized to minimize the Lagrangian D + λR of the
average distortion D = (1/N)

∑
nDn and the average rate

R = (1/N)
∑

nRn.
The image codec proxy itself comprises the differentiable

elements shown in Fig. 4. For convenience the image codec
proxy is modeled after JPEG, an early codec for natural im-
ages. Nevertheless, experimental results show that it induces
the trained preprocessor and postprocessor to produce bottle-
neck images sufficiently like natural images that they can also
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be compressed efficiently by other codecs such as HEVC.
The image codec proxy spatially partitions the input chan-
nels, whether they are full-resolution or half-resolution, into
8 × 8 blocks. In the DCT domain, the blocks X = [Xi]
are processed independently, using (1) a “differentiable quan-
tizer” (called a quantizer proxy) to create distorted DCT co-
efficients X̂i = Q(Xi), and (2) a differentiable entropy mea-
sure (called a rate proxy) to estimate the bitrate required to
represent the distorted coefficients X̂i. Both proxies take the
nominal quantization stepsize ∆ as an additional input.

Various differentiable quantizer proxies are possible
(Fig. 5). Luo et al. [21] use a soft quantizer Q(Xi) whose
transfer characteristic is a third-order polynomial spline.
Most end-to-end image compression works (e.g., [11]–[17])
use either additive noise Q(Xi) = Xi + Wi (where Wi is
i.i.d., Wi ∼ unif(−∆/2,∆/2)) or a “straight-through” quan-
tizer which is a function Q(Xi) = Xi + stop gradient(Wi),
where Wi = ∆round(Xi/∆) − Xi is the true quantization
noise and the stop gradient(·) notation indicates gradients
should not be propagated [22]. In all cases, the derivative
of X̂i = Q(Xi) with respect to Xi is nonzero almost every-
where. This lets us obtain non-trivial gradients of the end-to-
end distortion ||S− Ŝ||2 with respect to the parameters of the
preprocessor using the chain rule and back-propagation. We
use straight-through quantization in our experiments.

Various differentiable rate proxies are also possible. A
convenient family of rate proxies R(X) estimates the bitrate
for a block of transform coefficients X = [Xi] using affine
functions of ‖X‖22, ‖X‖1, or ‖X‖0. We focus on the latter
in our experiments, since it is shown in [23] that an affine
function of the number of nonzero quantized transform coef-
ficients, R(X) = a

∑
i 1 {|xi| ≥ ∆/2} + b, is an accurate

rate proxy for transform codes. In our work, we approximate
the indicator function 1 {|xi| ≥ ∆/2} by the smooth differ-
entiable function log(1 + |xi| /∆). (An alternative would be
to use tanh(|xi| /∆).) In sum, our rate proxy for a bottleneck
image B = [X(k)] comprising multiple blocks X(k) is

R(B) =
∑
k

R(X(k)) = a
∑
k,i

log
(

1 +
∣∣∣x(k)i

∣∣∣ /∆)+ b. (1)

We set b = 0 and determine a for each bottleneck image B
so that the rate proxy model matches the actual bitrate of the
standard JPEG codec on that image, i.e.:

a =
JPEG(B,∆)∑

k,i log
(

1 +
∣∣∣x(k)i

∣∣∣ /∆) . (2)

This ensures that the differentiable function R(B) is exactly
equal to JPEG(B,∆) and that proper weighting is given to its
derivatives on a per-image basis. Any image codec besides
JPEG can also be used. Similarly to the gradient of the distor-
tion, the gradient of R(B) with respect to the parameters of
the preprocessor can be computed using back-propagation.

3. EXPERIMENTAL RESULTS

Our results include two RGB datasets [24, 25] and a computer
graphics dataset [26]. Training and evaluation are performed
on distinct subsets of each dataset. All reported results use
the evaluation subsets with actual compression. U-Nets have
a multi-resolution ladder of four with channels doubling up
the ladder from 32 to 512. Convolutions are 3×3. MLP net-
works have two layers, both with three channels. We obtain
R-D curves as follows. We train four models mi with differ-
ent Lagrange multiplier values λi using established D + λR
optimization [27], letting the step-size ∆i be a trained param-
eter. For each model, we obtain an R-D curve by encoding
the images using a sweep over many step-size values. Finally
we compute the Pareto frontier of these four curves.

Fig. 7 shows rate-distortion (R-D) results over the RGB
evaluation set. For the 4:0:0 format, the standard codec can

(a) Original source image −→ (b) Neural code “bottleneck” image

(d) Reconstructed source ←− (c) Reconstructed “bottleneck” image

Fig. 6: Additional result as in Fig.1.
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Fig. 7: JPEG rate-distortion results across
500 RGB test images, comparing the standard
codec and neural-enhanced versions.
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Fig. 8: JPEG rate-distortion on 500 normal-
map images, comparing the standard codec
and neural-enhanced versions.
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Fig. 9: HEVC rate-distortion on 500 normal-
map images, comparing the standard codec
and neural-enhanced versions.

(a) Original source image (b) Neural code “bottleneck” image

(c) JPEG 4:4:4 (RGB) (d) Reconstructed source

Fig. 10: Compression of a normal-map image at 0.8 bits/pixel.
JPEG 4:4:4 (RGB) achieves 32.2 dB, whereas the neural-enhanced
4:4:4 format attains 34.2 dB. Refer to Fig.8 for full R-D results.

only transport grayscale, whereas the neural-enhanced ver-
sion manages to transport color through modulating patterns
exemplified in Fig. 1 and Fig. 6, resulting in substantial R-D
improvements (6–9 dB). Results for the 4:2:0 and 4:4:4 for-
mats are close to one another for the standard codec. The
neural-enhanced codec not only performs better but finds a
way to utilize the denser 4:4:4 sampling for improved gains.
Observe also that at very low rates the neural enhanced 4:0:0
codec is competitive with JPEG YUV codecs.

Fig. 8 presents the R-D results for normal-map images,
with one example image shown in Fig.10. Each pixel stores a
unit-norm vector n = (nx, ny, nz) representing the tangent-
space normal (nz ≥ 0) with respect to a triangle mesh. We
map each channel [−1, 1] to RGB [0, 255]; note that the third
channel nz is redundant. The best results are obtained via the
neural-enhanced full resolution codec which exploits the de-
pendency. Neural-enhancing codecs with 4:2:0 and 4:0:0 for-
mats provide significant gains over their respective baselines.

JPEG YUV 4:2:0 and YUV 4:4:4 use RGB-YUV conversion,
which does not provide any advantage for this dataset. JPEG
4:4:4 (no color conv.), which has no color transform, is bet-
ter. The best non-neural result (JPEG custom) is obtained
by zeroing out the third component nz during compression,
and recovering it in a postprocess as n̂z = 1 − (n̂2x + n̂2y)

1
2 .

However, the best result overall (by more than 1 dB) uses a
neural-enhanced codec with a 4:4:4 format.

Fig. 9 uses the same neural processing of Fig. 8, i.e., the
neural processing optimized for JPEG-like proxies, to sand-
wich HEVC without any retraining. Despite HEVC being a
significantly different codec, similar results are obtained.1

4. CONCLUSION

The sandwiched, neural-enhanced codecs provide the great-
est benefit when the input data space differs from that ex-
pected by the codec. In this paper we highlight scenarios
where neural processing can have significant impact. A clear
example is a tangent-space normal map, in which the vec-
tor stored at each pixel is constrained to lie on a hemisphere.
However, sandwiched codecs should also benefit the com-
pression of other image types, such as multispectral images in
remote sensing, material maps in graphics, medical images,
LIDAR images, depth images, HDR images, motion fields,
and so forth. Thus, we envision that the sandwich architecture
provides a general solution for adapting standard image and
video codecs to the compression of new image types, and will
further improve rate-distortion performance of these codecs
on specific RGB images. The techniques mentioned could of
course also be used in future standards as new coding modes
for macroblocks or larger coding units. Directions for future
work include applying the sandwich architecture to other im-
age types, minimizing the complexity of the neural process-
ing, and extending the work to video.

1JPEG/HEVC 4:0:0 results are omitted as they achieve only ∼11 dB.
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