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Fig. 1. A screenshot of the TopicFields system for visualizing approximately one million geo-tagged social media with hybrid topic
models and scalar fields (this figure is best visualized on a computer screen and does not reproduce as well on a printout). The top-left
map view is overlaid with an interactive scalar map, with each color indicating a different cluster of topics: fashion, art, and park. We
show the ground truth labels such as Central Park and The Museum of Modern Art from Google Maps for reference. The detail view at
the bottom shows the corresponding social media text, image, or video, as the user explores and clicks on the map. The control panel
on the right allows the user to select, add, and modify the topics to explore. The user could use the “Cluster” button to open the topic
matrix diagram (Fig. 4) and adjust the clustering results. The stream graph shows the volume of social media of different topics over
the queried time. The corresponding topic matrix diagram is shown in Fig. 5.

Abstract—The state-of-the-art machine learning models can extract hundreds of high-level topics from large-scale social media corpus.
Nevertheless, it remains a challenge for the users to interpret the comprehensive distribution of multiple topics in a space-time setting.
In this paper, we present TopicFields, an interactive system to explore, aggregate, and visualize geo-tagged social media using hybrid
topic models, scalar fields, and stream graphs. In the data processing stage, we apply two machine learning models Word2Vec and
Inception-v3 to the data and address the relationships among the extracted topics by rearranging them via spectral ordering. In the
visualization stage, we allow users to interactively select the preferred topics and alter the transfer function for visualizing the social
media on a map with levels of detail. Our system, TopicFields, can efficiently estimate the kernel density distribution and visualize
the scalar fields of the user-selected topics on a map on the GPU. In addition, we use temporal filters and stream graphs to enhance
comprehensibility of the data over time. Here we present the system and its architecture that ingests geo-tagged Instagram and
Twitter messages, extracts topics, hierarchically clusters, and facilitates their interactive visualization on a map. We demonstrate the
effectiveness of TopicFields with several potential use cases. We envision our system will be useful for visual analytics of geo-tagged
social media, tourism itinerary planning, and business intelligence, and mixed reality social media platforms [9].

Index Terms—spatio-temporal visualization; topic model; geographic information system; social media; spectral clustering
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Social media today plays an increasingly significant role in our daily
lives because of its interactivity, popularity, and social relevance. Every
day, billions of users create, share, and exchange messages about their
life on websites such as Twitter, Facebook, and Instagram. The influ-
ence of social media cannot be understated, as it covers a wide range of
topics such as assessment of restaurants and parks, fashion, museums
and the arts, and sporting events. The primary motivation behind our
research presented in this paper is to use the power of exploratory vi-
sual analytics to glean valuable insights from the spatio-temporal social
media that can help everyday users.

With recent advances in the deep learning models applied to natural
language processing and computer vision, machines are now able to
extract hundreds of topics or categories out of the social media data.
Nevertheless, there are several problems with directly presenting the
topics to the end user:

1. Topic duplication. Some, but not all, of the extracted topics
could be closely related to each other. In addition, neural networks
trained for text and images usually use different classes or labels
in the results. From visualization’s perspective, we would like
to aggregate similar topics from hybrid models. For example,
artists, painting, art all refer to art. Worse still, machine learning
algorithms may fail to classify some features to a specific topic,
which requires additional input from the users.

2. Information overload. Low-level features such as the unigrams
or the image classification labels usually results in hundreds of
labels. The variety of results are usually too overwhelming for
the user. To deal with this problem, we use spectral clustering
and provide the cluster with top frequencies for the user to reduce
the scope of their visual search.

3. Diversity. Previous visual analytic approaches have investigated
heat map visualization of a single topic on a map [20, 23], or
heat maps of positive or negative emotions on a map [19]. The
challenge of effectively visualizing a large number of topics that
are implicit in a diverse spatio-temporal social media has thus far
not been adequately addressed.

In this paper, we present TopicFields (Figure 1), an interactive vi-
sualization system of geo-tagged social media to address these three
critical problems. Our goal is to understand and correlate the social
topics that occur in the real world at various geographical locations
over time.

The main contributions of our work are:

• a novel web-based framework for analyzing, aggregating, and
visualizing multiple topics from large-scale geo-tagged social
media data,

• clustering hybrid machine learning classification results with spec-
tral ordering algorithm, such as an interactive matrix diagram,

• an efficient and interactive GPU-driven visualization algorithm for
visualizing multi-variate scalar data with kernel density estimation
and non-linear normalization methods.

We organize this paper as follows. First, we examine related work in
Section 2. We present an overview of the system architecture and work-
flow in Section 3. The processes for data mining, spectral clustering,
and topic matrix diagram are described in Section 4. The GPU-driven
scalar field visualization algorithm is described in Section 5. In Sec-
tion 6, we present several potential use cases. In Section 7, we discuss
the advances and limitations of the current prototype. We conclude the
paper and present future directions in Section 8.

2 RELATED WORK

Our work builds upon the rich literature of previous research on geo-
spatial visualization of social media and topic models for text and visual
information.

2.1 Geo-spatial Visualization
Visualizing information in a geo-spatial manner has been around for
as long as there have been maps. The ability to map, understand,
see patterns, and draw conclusions from information presented in a
spatially significant way is potent and intuitive. For a single topic,
previous research has used heatmaps with temporal filters to visualize
the spatial density.

MacEachren et al. [21] present one of the earliest systems for vi-
sualizing the heat maps of health reports on a map. Their system
offers time-series animation and linked geographic brushing to assist
domain experts in exploring the data. Their further work, SensePlace2,
[22] presents a geo-spatial visualization of Twitter messages with user-
defined queries, time filters, spatial filters, and heap maps of tweet
frequencies.

An early example of visualizing geo-tagged social media can be
seen in TwitterStand [30] and NewsStand [37], where Twitter and
news information is distributed on a map of the world as icons or
images. In this way, viewers can see what information is available,
where it originates from, and the density as well as the absence of the
information. Chae et al. [5] present a social media analysis system with
message plots on a map, abnormality estimation charts, and tables for
message content and topic exploration with Latent Dirichlet Allocation
(LDA) [3] and Seasonal-Trend Decomposition (STL) [7]. Stefanidis et
al. [35] visualize Twitter traffic as gridded heat maps. Maciejewki et
al. [23] employ a multivariate kernel method to create heat maps for
visualizing the density of geo-referenced data with a gradient between
red and blue. Our heat map visualization is inspired by their formulation
but advances the previous research by rendering the multiple scalar
fields representing various classes.

Lucasczyk et al. [20] apply the topological notion of Reeb graphs
to identify hotspots as areas of relatively high event density using ker-
nel density estimates. Lu et al. [19] present a novel framework for
sentiment modeling of geo-tagged social media and heat map visu-
alization with fixed bandwidth kernel density estimation (KDE) [34].
Hao et al. [12] visualize sentiments with color-coded text labels on
a map. Scharl et al. [31] present an interactive system that allows
users to analyze the extracted topics and sentiments with trend charts,
temporal controls, and heat maps of the sentiments. Chen et al. [6]
devise an interactive visual analytics system to investigate the move-
ment patterns and their semantic implication for social media users.
Kim et al. [16] further visualize the spatio-temporal patterns in the data
by employing flow visualization techniques and a 3D gravity model.
Using domain-specific knowledge, previous research has analyzed geo-
tagged social media to improve emergency responses [40, 45], assist
disease control [15], understand the dynamics of neighborhoods [8]
and cities [39, 44], and travel route planning [17].

To the best of our knowledge, our work is the first to offer social-
media-topic extraction, spectral ordering of related topics, and ex-
ploratory visualization of the scalar fields of multiple topics.

2.2 Topic Models
For text information, Latent Dirichlet Allocation (LDA) [3] is one
of the most popular and successful topic models. Further research
involves numerous variants of LDA algorithms, such as labeled
LDA [29], TM-LDA [42], spatial LDA [41], online LDA with vari-
ational Bayes [14], and correlated LDA [2]. Recently, neural net-
works such as Word2Vec with the Continuous Bag-of-Words model
and the Skip-Gram model [24], have been widely adopted to extract
vectorized features from texts. Tremendous progress also adopted
Naive Bayes [18], support vector machines [28], and deep neural net-
works [36] for sentiment classification in texts. However, even though
the accuracy of topic models keep improving, applying topic models
on social media data still requires significant efforts in preparing the
training data, or accurate filtering of topic features.

Instead of applying topic models to directly extract topic words
which may be not suitable to conclude user interests, we turn to another
effective solution which first leverages NLP model to extract a relatively
large size of candidate topics, then analyzes the correlation of the
candidate topics with the sophistical neural network word2vec model
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Fig. 2. The architecture and workflow of the TopicFields system. The servers consist of social media query engine, distributed SQL databases, and
hybrid machine learning modules for topic classification and clustering from text and images. After the aggregation of topics, the server transfers the
data to the client visualization system to present the topic matrix diagram, topic fields overlay, and temporal stream graphs. The users can select
the desired topics for visualization, have an overview of the distribution, zoom in and filter by keywords and time, and then visualize the details on
demand.

[25], and lastly leverages spectral clustering algorithm to obtain the
topics which are more consistent to human desire. Moreover, We
incorporate the spectral ordering into word2vec model, which facilities
users to select the topics of particular interests.

3 SYSTEM OVERVIEW

As shown in Fig. 2, our system consists of a social-media query engine,
distributed SQL databases, a machine-learning server that runs hybrid
modules, and a client-side visualization system.

First, the user is provided with an interactive map. The user can pan
around, zoom in or out to select the region of interest. The boundary of
the map is then sent to the social media query engine. In the current
prototype, the query engine is able to scrape a few hundred geo-tagged
social media from external sources such as Twitter and Instagram in
around a second, but will mostly query from the offline databases. The
social media are stored and organized in distributed SQL databases.
Next, the machine learning module extracts topic features from the text
and images, as described in Section. 4.2. It uses the spectral ordering
algorithm on the groups of topics and sends the matrix to the user for
filtering. On the client side, the majority groups of the topics after
spectral ordering are visualized as a matrix diagram. The user is able to
select, add, and remove topic features from the groups and interactively
visualize the topic fields on the map.

For exploratory visualization, we have followed the Shneiderman
design principle [33] overview first, zoom and filter, then details-on-
demand. First, we present the map view with topic fields visualization
to offer the user an overview of the social media according to the topics.
The stream graph offers the user an overview of the volume of the
topics over time. Finally, the user is able to zoom in and click on the
map view to query proximate social media. We have linked our system
with Google Street View to provide an immersive experience to explore
the map.

4 DATA PROCESSING

In this section, we present the process of data mining, feature extraction,
and spectral clustering.

4.1 Data Mining
Our geo-tagged social media scraper is a back-end program written
in PHP. Tuchinda et al. [38] proposed to model web services as in-
formation sources in a mediator-based architecture and have built an
exemplary application, Mashup. Using a similar architecture, our sys-
tem is able to integrate information from several web services. In this
prototype, we use Twitter and Instagram as the major sources of social

media in our proof-of-concept system. We collected the following four
types of data:

1. Geo-spatial and textual location including latitude and longi-
tude coordinates, street names, and user-tagged location name.

2. Caption and tags containing text information of the Tweets or
Instagram messages.

3. Publication time-stamp containing the exact date and time when
published.

4. User comments and likes reflecting the popularity level.

We have investigated two major districts on the eastern coast of the
United States: the Manhattan District of New York, and the District of
Columbia (Washington D.C.). Over three months from December 2017
to March in 2018, we have collected 946,856 Twitter and Instagram
messages with specific geographical labels and publication time-stamps
from the public domain, with 589,902 in the Manhattan District and
356,954 in the District of Columbia. The data was scraped using a
flood-fill algorithm inspired by Shen et al. [32].

4.2 Feature Extraction
Our data consists of two types of social media: text and images. Some-
times, we obtain videos via the social media query engine. Instead of
using video data, we use the first frame or the user-defined thumbnail
for feature extraction.

As for text messages, we first experimented with the well-known
topic model, Latent Dirichlet Allocation (LDA) [4], to extract accurate
clusters of topics from our data. However, the state-of-the-art topic
models cannot guarantee generation of clean results. For instance, the
top three topics we have extracted using LDA [4] are:

enhance, ishootfilm, bend, contemporary, dance, woo, retro-
spective, ...

sadly, indore, holidayshopping, foodbaby, prk, ...

minidachshund, ana, bulking, busstopdinernyc, fridays, ...

These topics can hardly be used directly for visualization. This led
us to the question: can we use machine learning to cluster the most
frequent keywords, provide visualization results, and allow the visual
analyst to select the desired topics she wants?

Towards this direction, we use the Natural Language Toolkit (NLTK)
to extract to top 300 words from the entire social media datasets and
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Fig. 3. The top three classification results by applying the Inception-v3
deep neural network to our dataset. Our topic feature vector of images
consists of the entire hierarchical tree of the top three labels from the
WordNet. For example, pizza belongs to dish, nutriment, and food.

apply the Word2Vec neural network to the topics to compute the feature
vector for each text data.

Still, 300 features are too much for a visual analyst to interactively
explore, so we decided to compute the similarity between each pair of
features and use spectral clustering (Section 4.3) with image labels to
help further aggregate the topics into topic classes.

For images, we use the Inception-v3 model on the image dataset to
compute the top three classification results. The results above the 80th

quantile are used for extracting the feature vectors. We concatenate all
labels from the hierarchical tree to find the topics for the image social
media. For example, as shown in the first image of Fig. 3, the feature
vectors are “pizza, pizza pie / dish / nutriment, nourishment, nutrition,
sustenance, aliment, alimentation, victuals / food, nutrient”.

4.3 Spectral Clustering
Our topic features consist of unigrams and the image classification
labels, which can be 300-dimensional vectors. Some, but not all, of the
extracted features could be closely related to each other. When features
are in arbitrary order along the x-axis of the design widget (Fig. 4(a)),
assigning a meaningful characteristic feature vector may require nu-
merous control points, explicitly defining the value for each dimension.
Although the reordering of features does not add to the possible visu-
alizations that can be generated using the machine-learning-assisted
approach, the usability issue must be addressed to benefit from the
power of high-dimensional representations. We address the relation-
ships among features by rearranging them using spectral ordering,
which sorts the features by the eigenvector of the second smallest eigen-
value of a graph Laplacian. First, the normalized Laplacian matrix is
generated based on feature-to-feature similarity; then, the eigenvec-
tor associated with the second smallest non-negative eigenvalue (the
Fiedler vector) is calculated, as shown in Fig. 4(c); finally, the features
are sorted based on their values in the Fiedler vector. The result is
shown in Fig. 4(b) is an ordering of features where neighboring fea-
tures are similar. The Fiedler vector and other eigenvectors associated
with small eigenvalues also form the basis of spectral clustering. Many
pairs of the 300 features are indeed highly correlated as can be seen by
several dark pixels. Nevertheless, an arbitrary order of features does
not take advantage of such correlations, resulting in a disorganized
similarity matrix in Fig. 4(a).

After rearranging the topic features, we cluster the adjacent fea-
tures using disjoint-set data structures and partition refinement algo-
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Fig. 5. The resulting matrix diagram after spectral clustering with the
following queries: art, food, shopping, park and fashion.



(a) without nonlinear normalization, k = 1 (b) nonlinear normalization with k = 2 (c) nonlinear normalization with k = 3

Fig. 6. Visualization of the topic fields with different gain factors. (a) shows the baseline visualization using the Gaussian PDF without nonlinear
normalization, (b) shows the nonlinear normalization result with a gain factor of 2, and (c) shows the result with a gain factor of 3. The nonlinear
normalization significantly increases the contrast between different clusters of topics.

rithms [27]. The pairs of features whose similarity is greater than
σ = 0.7 and a distance of the spectral ordering is smaller than δ = 0.5
are clustered into one disjoint set. We allow the users to change σ and
δ in the control panel for the matrix diagram.

The spectrally-ordered similarity matrix places similar features
closer together, resulting in large colorful blocks of various sizes along
the diagonal. Thus an accessible feature order allows user-directed
selection of similar topics using fewer operations in the control panel.

5 TOPIC FIELDS VISUALIZATION

Our algorithm visualizes the scalar field of user-filtered topics of geo-
tagged social media over a map.

Given N geo-tagged social media over the map, with locations gi, i =
1,2, · · · ,N;g ∈ G, suppose each social media is assigned to a set of M
topics T : {t1, t2, · · · , tM}. Each topic consists of multiple unigrams.
We classify a social media to belong to a topic if and only if the
unigram appears in the caption, tag, or the hierarchical tree of the
image classification results. We limit M ≤ 6 in our system, since the
capacity of short term memory for processing information is usually
seven, plus or minus two [26], so is the number of colors distinguishable
in visualization schemes [13].

First, we generate a grid mesh with W ×H vertices and assign a
scalar vector f to each vertex. For vertex centered at gv, we apply the
kernel density estimation within its circle of radius R:

ft(gv) =
1

NR

N

∑
i=1

K
(

D(gv,gi)

R

)
(1)

, where the kernel function K could be any non-negative function that
integrates to one. However, we prefer the kernel functions that smoothly
model the falloff of the spatial distribution, such as Gaussian, Quatic,
Epanechnikov, or Triweight functions. Here we use the Gaussian
Probability Density Function (PDF) with a bandwidth R:

K(R) =
1√
2π

e−R2/2 (2)

Suppose we have a transfer function to colorize each topic t with the
color ct . For each vertex, we can blend the topic fields over the grids
by:

c = ∑
t∈T

ct ·N ( ft) (3)

, where N (·) is a nonlinear normalization method to the scalar
fields to emphasize centralized topics:

N ( ft) =
g( ft)

∑t∈T N (g( ft ,k))
(4)

This nonlinear normalization operator partitions the map into differ-
ent clusters consisting of different topics. In particular, we apply the

gain function g(x,k) employed in modern ray tracing frameworks such
as Pixar Renderman [1]:

g(x,k) =


1
2
· (2x)k, x < 0.5,

1− 1
2
· (2−2x)k, x≥ 0.5

(5)

, where we call k as the gain factor to adjust the contrast of the scalar
field. We plot the function in Fig. 7.

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

k=1 k=2 k=3

Fig. 7. The gain function remaps the unit interval into the unit interval. It
maps 0.5 to 0.5 while expanding expanding the sides and compressing
the center.

By default, we take k = 2.0. However, we allow the user to change
the gain factor using a control panel powered by dat.gui for the WebGL
rendering. In this way, we assign a scalar vector to every vertex on
the planar mesh. Typically, we use 32× 32 vertices for the current
boundary on the map.

In the fragment shader, we interpolate the normalized scalar field
using Lagrange Bicubic sampling [43] and colorize the scalar field
using the user-defined colors. Finally, we efficiently render the Topic
Fields using WebGL in a modern browser in real time. We show the
visualization results with different gain factors in Fig. 6.

6 USE CASES

With TopicFields system, we demonstrate two potential use cases for
trip planning and searching with temporal filters.

6.1 Trip Planning
First, we demonstrate how TopicFields could help a user to plan a short
trip near the central park region. Suppose that the user has decided
to explore the central park, but has no idea where to go for food and
shopping. So the user inputs park, food, and shopping into the topic
query box. With the spectral ordering algorithm, the user quickly
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(a) topic clustering for food, shopping, and park (b) seek for food near the central park with TopicFields (c) linking to the street view to identify the spot 

(d) seeking for social media in the central park (e) finally, looking for places for shopping nearby

Fig. 8. These figures show the procedure for planning a trip via TopicFields near the central park.

aggregates three clusters including 12 features into the query engine.
With the TopicFields visualization, the user could quickly identify
geo-tagged social media that relates to parks, as shown in Fig. 8(d):

#centralparksouth #centralpark #nature #flowers #flower-
sofinstagram #ferns #flowersofcentralpark #spring #nyc

From the topic fields, food is distributed everywhere in the map. The
user could simply select food, and query close to the central park. One
of the results is shown in Fig. 8(b):

This is what I am talking about! #food #newyork #follow
#Instagram #foodporn #sandwich #love #Angelas #central-
park #Saturday

The user could further drag the street view pacman on the right-
bottom of the map to identify the environment near the spot: it seems
like a real sandwich shop.

However, the places for shopping seems to be a little far away from
the park, given the small purple distribution on the map. Without the
TopicFields visualization, one may click anywhere on the map to seek
for social media that mentions shopping, while the TopicFields visu-
alization quickly identifies the 5th Ave as the concentrated places for
shoppers:

essentials? #louisvuitton #gucci #guccigang #dolcegabbana
#guccicommunity #essentials #shopping #manhattan #nyc
#5thavenue #streetstyle

6.2 Searching with Temporal Filters
We briefly demonstrate how TopicFields could help a user to seek for
geo-tagged social media with temporal filters. Using the stream graph,
we can see that the amount of social media has peak values in around
10am and 5pm. To see the differences regarding the lake in the central
park, we adjust the temporal filter to before 5pm and after 5pm. The
results are shown in Fig. 10 and Fig. 9:

Before 5pm, the pond looks clear and beautiful:

Fig. 9. This figure shows the geospatio query with the “park” topic before
5pm.

Fig. 10. This figure shows the geospatio query with the “park” topic after
5pm.



Cooler days as summer turns to fall (and wishing I lived in
a four seasons kind of place). #summertofall #centralpark
#newyork #nyc #happyfriday

#wagnerscove #wcp #westcentralpark #spring #nature
#ponds #nyc beautiful day! #faeries live here ? #nycmydna
#timeoutnewyorkcity

After 5pm, the pond has a different atmosphere:

#wagnerscove #wcp #westcentralpark #spring #nature
#ponds #nyc beautiful day! #faeries live here ? #nycmydna
#timeoutnewyorkcity

7 DISCUSSION

There are a few limitations and improvements that could be made to
our algorithm. First, the variety and diversity of Twitter posts were
very surprising. The Tweets were written in various manners, with
many tweets containing few real words, or no real words at all. In
addition, the amount and degree of sarcasm and double meaning in
tweets also made calculating the actual topic of the tweets very difficult.
For example, there are a few social media messages that used the word
park, to refer to the Park Avenue in New York City.

Second, the deep-learning model on images is not always reliable.
Sometimes it provides completely wrong information. For example, in
a picture of a dog, the neural network recognized it as a boxer.

Third, the spectral ordering algorithm heavily relies on the neural
network that learns the similarity between pairs of word vectors. If the
similarity score is not high enough, the algorithm may not place similar
words into a cluster.

8 CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel system to explore, summarize,
and visualize geo-tagged social media with hybrid topic models and
scalar field. Our system, TopicFields, can efficiently estimate the kernel
density distribution and visualize the scalar fields of the user-selected
topics on a map on the GPU. We have presented the system and its
architecture that ingests geo-tagged Instagram and Twitter messages,
extracts topics, hierarchically clusters, and facilitates their interactive
visualization on a map. The advantages of using TopicFields are that
it allows large volume of spatial and temporal data to be visualized
and understood, then correlated with a series of topics. Our system
includes an efficient and interactive GPU-driven visualization algorithm
for visualizing multi-variate scalar data with kernel density estimation
and non-linear normalization methods.

We envision the key components of our system, the spectral ordering
for the matrix diagram and the GPU-driven visualization of multi-
variate scalar data, could inspire future research and systems to visualize
geo-tagged health records, business intelligence, and news articles, e.g.,
social media platforms for virtual and augmented reality [9–11].
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