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Figure 1: Results and overview of our interactive reconstruction pipeline. Our system is available at https://geollery.com.

ABSTRACT
Social media in virtual reality is in a high-growth market segment
with influential products and services in virtual tourism, remote
education, and business meetings. Nevertheless, previous systems
have never achieved an online platform which renders a 6DoF
mirrored world with geotagged social media in real time. In this
paper, we introduce the technical detail behind Geollery.com which
reconstructs a mirrored world at two levels of detail. Given a pair
of latitude and longitude coordinates, our pipeline streams and
caches depth maps, street view panoramas, and building polygons
from Google Maps and OpenStreetMap APIs. At a fine level of
detail for close-up views, we render textured meshes using adjacent
local street views and depth maps. When viewed from afar, we
apply projectionmappings to 3D geometries extruded from building
polygons for a coarse level of detail. In contrast to teleportation, our
system allows users to virtually walk through the mirrored world
at the street level. Our system integrates geotagged social media
from both internal users and external sources such as Twitter, Yelp,
∗The work was fully conducted at University of Maryland, College Park while the first
author is current working at Google, San Francisco.
†The first two authors contributed equally to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6798-1/19/07. . . $15.00
https://doi.org/10.1145/3329714.3338126

and Flicker. We validate our real-time strategies of Geollery.com
on various platforms including mobile phones, workstations, and
head-mounted displays.
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1 INTRODUCTION
Since the debut of Social Street View1 [25] on Web3D 2016, sev-
eral 3D social media platforms or prototypes have emerged. For
example, High Fidelity2 (early 2016), Facebook Spaces3 (late 2016),
and VR Chat4 (early 2017) allow people to communicate in virtual
avatars like massively multiplayer games (MMOs); Social Street
View [25] presents a 3D social media platform with discrete panora-
mas, thus preventing users from virtually walking on the street;
1Social Street View: http://socialstreetview.com
2High Fidelity: https://www.highfidelity.com
3Facebook Spaces: https://facebook.com/spaces
4VR Chat: https://vrchat.net
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VirtualOulu [2] showcased at CSCW 2017 presents a design proto-
type which allows virtual avatars to walk in an offline city model,
yet is not available throughout the world in real time. To the best
of our knowledge, none of the existing systems allows the users
to virtually “walk” and explore social media on an arbitrary street
of a mirrored world that establishes the correspondence between
the physical world and the virtual environment. This led us to ask:
what if we could create an interactive mirrored world on the web,
which allowed any one to virtually fly to a remote city, to share space-
time stories with remote friends, and to collaborate with others on
geotagged social media content?

To answer these questions, we build Geollery.com, a mixed-
reality social media platform which reconstructs a live mirrored
world with geotagged social media. 3D models of the physical
world are widely used in a diverse set of applications including
virtual tourism [25, 56], geographical education [47], neighborhood
auditing [10], and urban planning [3, 51]. However, interactive
reconstruction of a mirrored world remains a significant challenge.

On the one hand, commercial products such as Google Earth5,
offer world-scale, textured meshes at the aerial level, but the texture
quality downgrades significantly for close-up views. Moreover, it
does not allow users to freely walk in the virtual environments
due to occlusion from the satellite imagery and the 3D models
are not publicly available. On the other hand, classic high-fidelity
approaches to modeling the 3D world have concentrated on gener-
ating 3D meshes using raw input data. For example, structure-from-
motion (SfM) pipelines [53, 59, 62] use hundreds or thousands of
images in their 3D reconstruction systems to generate dense 3D
meshes or point clouds. Despite the effectiveness of these offline
systems, their data requirements and processing requirements make
them unsuitable for mobile and web applications with processing
and bandwidth constraints. Web applications are generally limited
to a few megabytes which prevent them from downloading very
dense 3D meshes or the data necessary to generate them. Visu-
alizing dense point clouds on low-powered devices may require
expensive server-side rendering techniques such as [13]. Further-
more, generating 3D meshes or dense point clouds at a large scale
requires data unavailable to most developers.

While offline reconstruction has been well studied and can yield
very high-quality results for reconstructing small scenes, it is infea-
sible for applications with limited resources requiring world-scale
virtual environments. Applications requiring an accurate represen-
tation of the physical world have thus far been limited to 2D maps,
panoramic images [4, 25], and handmade 3D models [2]. Since
creating 3D models is very labor-intensive and requires constant
updating, 2D maps and panoramas are the primary sources of data
available to developers looking for a large virtual representation of
the physical world.

Google Street View6 [4] has led the effort in creating client-
side reconstruction applications by generating small depth maps
for each of their street view images with most noise, pedestrians,
and small vehicles filtered out. These depth maps, compressed, are
less than 10 kilobytes each, making them suitable for web applica-
tions. While depth information has been incorporated into Google

5Google Earth: https://www.google.com/earth
6Google Street View: https://www.google.com/streetview

Street View, they have only been used for positioning cursors and
distorting street view images to make transitions. Client-side re-
construction by fusing multiple panoramic depth maps of street
view images has yet to be explored.

In a previous paper [23], we present the design process, user
study, and discussion of human factors in the first version of Ge-
ollery. In this paper, we detail the technical aspects of the second
version, the online deployment, and the onsite demonstration of
Geollery.com at CHI 2019 [22]. Specifically, we introduce an inter-
active pipeline of fusing 360° images for a mirrored world at two
levels of detail (Figure 1) [24]. At a fine level of detail for close-up
views, we incorporate multiple Google Street View panoramas and
depth data to reconstruct textured meshes directly on the GPU. At
a coarse level of detail when viewed from afar, we create extruded
boxes with the buildingmetadata fromOpenStreetMap7 and texture
the meshes with street view panoramas. We contribute a web-based
architecture to stream, cache, reconstruct, and render the mirrored
world in real time. Our system is available at https://geollery.com.

2 BACKGROUND AND RELATEDWORK
Our work builds upon the prior art in large-scale 3D reconstruction
from depth cameras and 360° images.

2.1 3D Reconstruction from Depth Cameras
Traditionally 3D reconstruction has focused on structure-from-
motion techniques [39, 57] to reconstruct small scenes from mul-
tiview photographs [29, 46, 55, 56, 63] or RGB video streams [6,
7, 11, 60, 64]. Recently, large-scale reconstruction spanning entire
rooms or buildings has become possible due to the low-cost depth
cameras such as Microsoft Kinect8 [34] and Microsoft HoloLens9
[14]. Furthermore, outdoor reconstruction using Project Tango10
tablets have been shown to run at near interactive frame rates given
continuous updates from a depth camera [36, 54]. Thanks to the re-
cent advances of GPU technologies, real-time reconstruction from
multiview stereo cameras has also become possible [15, 31, 37, 44].
While these real-time approaches to reconstruction from depth
camera video have shown impressive results, they require a contin-
uous source of depth information provided by depth cameras. Our
approach uses existing, moderately sparse, depth maps and 360° im-
ages to reconstruct large scenes. Following previous techniques
in view-dependent rendering, we blend images for projective tex-
ture mapping [12]. However, unlike previous systems, our pipeline
focuses on client-side reconstruction using pre-processed depth
images as opposed to raw depth video streams making our system
feasible for real-time 3D web applications.

2.2 Reconstruction from Google Street Views
Since large-scale reconstruction using individual cameras has pre-
viously been unrealistic, most city-level reconstruction approaches
have focused on using satellite and aerial imagery as their data
source [42]. While researchers have also attempted large-scale

7OpenStreetMap: https://openstreetmap.org
8Kinect: https://developer.microsoft.com/windows/kinect
9HoloLens: https://www.microsoft.com/en-us/hololens
10Project Tango: https://en.wikipedia.org/wiki/Tango
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(a) initial spherical geometries (b) depth correction (c) intersection removal

(d) texturing individual geometry (e) texturing with alpha blending (f) rendering results in fine detail

Figure 2: Our rendering pipeline for fusing 360° images in fine detail. (a) We start by generating spherical geometries to repre-
sent the 360° images. The segments of the sphere are greatly reduced for visualizing the geometries clearly. (b) In the vertex
shader, we correct the depth value for each vertex by sampling the depth maps with its spherical coordinates. (c) In the frag-
ment shader, we discard the pixels in the intersection of the adjacent geometries. (d) Texturing individual spheres with the
corresponding 360° images may leave a visible seam. (e) Texturing the spheres with a weighted average according to the po-
sition to the camera yields a smoother result. (f) Finally, we interactively texture the ground plane with the corresponding
satellite images, apply Gaussian filters in occluded regions, and allow the users to freely walk along the street while streaming
the next street views on the go.

reconstruction from unstructured photo collections [1], these ap-
proaches requiremassive amounts of data and computational power,
limiting their feasibility for web-based applications.

With the wide availability of 360° images, Google Street View
has become the most promising data source for high-resolution
large-scale outdoor reconstruction. Torii et al.[59] pioneered work
in city-level reconstruction by using 4,799 images to reconstruct
Pittsburgh using a Structure-from-Motion (SfM) pipeline. The draw-
back of using SfM pipelines to reconstruct large city spaces are their
requirement of multiple images to detect motion and large amounts
of processing power to generate the resulting point clouds.

An alternative approach to reconstructing cities purely from
Google Street View is constructing building geometries from exist-
ing 2D map information and using Google Street View to texture
them. For instance, Bulbul and Dahyot [5] use 2D building informa-
tion from OpenStreetMap alongside low resolution Google Street
View images (640× 640 px) to generate their 3D cities. However, by
fusing multiview street view images and re-calibrating numerous
cameras, their approach is limited to offline applications and low
resolution. The benefit of using 2D map information is their wide
availability and ease of use: 2D building information can be ob-
tained from government records and satellite images. Nevertheless,
2D map information is unable to capture complex geometries such
as the Eiffel tower.

Prior work has targeted offline reconstruction using a moderate
amount of low-quality noisy data, such as raw depth maps. Recent
research has focused on live reconstructions using a large amount

of noisy data such as LIDAR [61] and multiview depth cameras
[15, 16]. In this paper, we present two real-time reconstruction
approaches requiring only a small number of high-quality 360° im-
ages and metadata from Google Street View and OpenStreetMap.
By using interactive reconstruction methods with low-bandwidth
requirements, our system is able to access arbitrary locations of a
mirrored world wherever the data is available in OpenStreetMap
and Google Street View without the need for any server-side pre-
processing or continuous updating of the data.

3 FUSING 360° IMAGES IN FINE DETAIL
In this section, we describe our real-time approach to fusing multi-
ple 360° images, along with their associated depth maps at a fine
level of detail. Our rendering pipeline is illustrated in Figure 2.

3.1 Preprocessing
Given a pair of longitude and latitude coordinates, our system
sources street view images and depth information from Google
Street View in JavaScript. The raw images are fetched as 512 × 512
px JPEG tiles, which could be decoded and stitched together into
five different levels of detail as listed in Table 1. For mobile platforms
with lower bandwidth and smaller screens, our system fetches level
2 street view images by default while for workstations, our system
fetches level 3 or 4 to achieve a higher quality with minimum
latency. We offer the users options to select custom levels of detail.

To demonstrate our interactive approach, we download, decode,
and stitch together nearby street view images in a background
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Table 1: Resolution, tile counts and file size of Google Street
View (GSV) 360° images

level pixels resolution number of tiles file size
5 134.2M 16384 × 8192 32 × 16 ∼ 5M
4 33.5M 8192 × 4096 16 × 8 ∼ 2M
3 8.4M 4096 × 2048 8 × 4 ∼ 800K
2 2.1M 2048 × 1024 4 × 2 ∼ 300K
1 0.5M 1024 × 512 2 × 1 ∼ 90K

thread in real time, leaving the main thread available for the render-
ing pipeline. Similarly, as depth information provided by Google
is base64-encoded [35] and zlib-compressed11, we also download
and decode the neighboring depth maps in a separate background
thread using JavaScript Web Workers.

3.2 Creating a Single Street View Geometry
To get an initial geometry, we first generate a spherical geometry
with a fixed radius (Figure 2a) similar to the localized scene genera-
tion approach used in [50]. In our prototype, we set the radius R
to 1000m, the farthest depth, to prevent the geometry from getting
culled when navigating in the scene. The number of width and
height segments of the sphere is chosen based on the resolution
of our depth map with one additional height segment for the top
and bottom vertices of the sphere. By matching the resolution of
the depth map with the number of width and height segments of
the sphere, each vertex of the sphere geometry, except the top and
bottom, corresponds to exactly one pixel of the depth map. For
a 512 by 256 depth map, we construct a sphere with 512 width
segments and 257 height segments. This sphere would therefore
have 512 × 256 + 2 = 131, 074 vertices and 2 × 512 × 256 = 262, 144
faces.

To achieve interactive frame rates, we use a custom vertex shader
running on the GPU to determine the exact positions of the sphere
vertices to create a convincing geometry. In the vertex shader, we
first compute the spherical coordinates of each vertex in the sphere
geometry, (ρ0,θ0,ϕ0), by calculating the directional vector d = v−s
from the location of the street view camera s to the vertex v. Here
ρ0 is the initial radius of the sphere while (θ0,ϕ0) are the converted
coordinates of d in the SO(2) space. We then look up the correct
depth value ρ1 by sampling the depth map at (θ0,ϕ0). Finally, we
move each vertex to the correct spherical position (ρ1,θ0,ϕ0) by
setting its Cartesian position in world coordinates to

(
ρ1
ρ0

)
d +

s. With a vertex shader running on the GPU, all computation is
executed in parallel and in real time.

3.3 Merging Multiple Street View Geometries
With depth maps, we can generate one geometry for each street
view image, as shown in Figure 2(b). To encapsulate a wider area
than what is possible with a single street view image, we aim to
seamlessly fuse the corrected spherical geometries generated along
each street.

11zlib: https://zlib.net

When positioning the sphere geometries based on the geographic
coordinates of their associated street views, we get large intersec-
tions between adjacent geometries. Ideally, from any point within
each sphere, we would like to see the farthest street view sphere.
Hence, we decide to discard the intersection between adjacent ge-
ometries. To implement this technique, we compute whether each
pixel of each geometry intersects with another geometry at runtime.
With the metadata from Google Street View, we query and pass in
the locations for adjacent street view images to the fragment shader.
For each pixel located at p, we compute the distance d0 = |p − v0 |
from the current street view v0 to p and the distance d1 = |p − v1 |
from adjacent street views v1 to p. If the adjacent street views are
closer in distance to the current pixel than the current street view,
i.e., d1 < d0, we discard the current pixel. As shown in Figure 2,
this discards the interior of the intersections of the two geometries
while preserving the remainder.

While fusing the geometries by discarding the intersections
yields promising results, the imperfect correspondence between
the depth maps of adjacent street views creates visible gaps at the
seams where two spheres intersect as shown in Figure 3(a). To
eliminate these gaps, we translate each vertex v0 near the gaps
by a vector δ0 = v̂0 − v0 from the initial vertex position v0 to a
position v̂0 suggested by the other depth map, scaled by a factor
of 0.7. An example is shown in Figure 3(b). Note that while this
method eliminates many gaps caused by erroneous depth map in
real time, it may not work for very large gaps and does not fuse the
texture information which we discuss next.

(a) without gap alignment (b) with gap alignment

Figure 3: Results before and after gap alignment for trans-
lating the vertices near the seams. (a)When renderingmulti-
ple street view geometries, a gap (highlighted in the red box)
may appear at the seams where two geometries intersect. (b)
By aligning the vertices around the seams, we mostly elimi-
nate the gap.

3.4 Texturing the Geometries
We first texture the individual geometry by sampling from the cor-
responding 360° image with the spherical coordinates at each pixel.
While this gives a perfect view from the center of the street view,
we notice several issues including misalignment between adjacent
geometries, distorted projection on the ground, and pixelation in
occluded regions. Next, we present our efforts to mitigate these
artifacts in real time.

3.4.1 Weighted Alpha Blending for Smoothing the Seams. Street
view images usually do not line up at the edges where the ge-
ometries meet. This is due to both poor calibrations of the camera

https://zlib.net
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positions and inaccurate depth estimation. An optimal solution may
use optical flow over the mesh [9] and Poisson blending [48]. Nev-
ertheless, these approaches are usually not available for real-time
systems.

(a) without seam blending (b) with seam blending

Figure 4: Results before and after applying the weighted al-
pha blending near the seams. (a)Without blending, the seam
(highlighted in the center of the red box) at the edges is no-
ticeable due to the texturing misalignment. (b) Weighted al-
pha blending in the fragment shader makes the seammuch
less distinguishable.

In our rendering pipeline, we blend the textures of the adja-
cent two street view geometries at the seam with weighted al-
pha blending inspired by the Montage4D system [19]. For each
pixel, we first compute its distance to each of the two adjacent
street views, at distances d0 and d1. Note that a better but computa-
tionally expensive approach will involve computing the geodesics
from each vertex to the seam, as explained in [20]. We next sam-
ple the textures from the two 360° images as c0 and c1. Finally,
we color the pixels near the seams with the weighted average of(
0.5 + d1−d0

2δ

)
c0+

(
0.5 − d1−d0

2δ

)
c1. As shown in Figure 4, by blend-

ing the pixels near the gap where the two geometries meet, the
seams become much less distinguishable.

3.4.2 Texturing with Satellite Images. In dense urban areas, unde-
sirable cars and pedestrians often appear in street view images. In
most cases, these pedestrians get projected to the ground when
incorporating Google’s depth maps. While this projection is appro-
priate when viewed from the position the original street view was
taken, it leads to distortions when viewed from another perspec-
tive. To eliminate the distorted cars and pedestrians, we choose to
overlay Google Maps’ satellite images instead. As shown in Fig-
ure 5, texturing the ground plane with satellite images results in
a better visual appearance for our system. We acknowledge that
this method is limited to the availability and lower resolution of
the external satellite images and we envision further systems may
take advantage of image in-painting [28, 43] or deep learning [65]
to eliminate the artifacts on the ground.

3.4.3 Applying Gaussian Filters. Pixelation of street view images
on the geometry occurs when portions of the real geometry are
occluded from the street view image.

Stretching, distortion, and pixelationmay occur when portions of
the real geometry are occluded from the 360° textures. For example,
as presented in Figure 6, when the camera is positioned in the
center of two street views taken at a large distance apart, the sides
of the building are not observed by either of the 360° images. Hence,

(a) texturing with street view images (b) texturing with satellite images

Figure 5: Results before and after texturingwith satellite im-
ages for the ground plane. Note that the satellite textures
eliminate the distorted vehicles and pedestrians projected
onto the road.

the large occluded areas sample from very few pixels, resulting in
undesirable artifacts.

(a) without Gaussian filtering (b) with Gaussian filtering

Figure 6: Results before and after applying a Gaussian fil-
ter in the occluded areas. The left image suffers from pix-
elation caused by occlusion and distortion, while the right
figure shows a smoother sampling result.

To detect the occluded region, we first sample the depth map
in the vertex shader four additional times to sample the depth of
the adjacent vertices. The artifacts occur primarily when the depth
drops off at the edge of the building. Therefore, if the depth of
neighboring vertices differs drastically from the current vertex,
we mark the current vertex as occluded. Finally, we apply a 5 × 5
Gaussian filter with a standard deviation of 7.0 in the fragment
shader on the GPU12 to smooth the occluded pixels.

4 FUSING 360° IMAGES AT A COARSE LEVEL
OF DETAIL

Whereas the former rendering pipeline offers fine detail for close-
up views, a bird’s-eye view requires a different real-time approach.
Once the camera dollies outside of the geometries used in close-up
views, the outer face of the sphere-based geometries becomes visi-
ble as presented in Figure 2(e). Hence, fusing 360° images at a larger
scale encompassing multiple streets requires larger-scale geome-
tries. For reconstructing a bird’s-eye view in real time, we create
building geometries based on 2D map data rather than localized
depth maps from each street view. We further project street view
images onto the building geometries in a fragment shader running
on the GPU.
12Code of Gaussian filter: https://shadertoy.com/view/ltBXRh

https://shadertoy.com/view/ltBXRh
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4.1 Building Geometries
Unlike the previous approach, we choose not to use the depth maps
to generate building geometries since they are unable to capture all
faces of a building. Instead, we source data from OpenStreetMap
using theOverpass API13 to obtain 2D polygons for buildings.While
these polygons are not as widely available as street view images,
we find that in urban areas such as New York City, 2D building
polygons often come with useful metadata such as the height in
meters or the number of floors for each building. To convert these
2D polygons into 3D, we extrude them to the correct height based
on the information provided in the metadata. For instances where
metadata is not available, we extrude them to a predefined height
of 16 meters to represent a 4-story building.

4.2 Projecting Street Views
While previous approaches [5] to generating 3D textured building
geometries have achieved impressive results incorporating multiple
street view images, their offline systems typically require signifi-
cant preprocessing time and use hundreds of low-resolution street
view images. Instead, we texture 3D geometries in real-time by
using a single street view image to maintain real-time performance,
preserve high-quality textures, and minimize image artifacts.

We project the street view onto building walls by sampling the
nearest street view image from a fragment shader. In the fragment
shader, we calculate the directional vector d = p − s from the
position of the street view s to each pixel p. Then we calculate the
direction of the vector in spherical coordinates (ρ0,θ0,ϕ0) using the
transformation (ρ0,θ0,ϕ0) = (|d|, arcsin(d .y

|d | ), arctan 2(d .z,d .x)).
Finally, we sample the (θ0,ϕ0) point of the street view image to
color each pixel of the building.

(a) without occlusion test (b) with occlusion test

Figure 7: Results before and after the occlusion test with
a single 360° image (for illustration purpose) and multiple
buildings. The light green icon marks approximately where
the street view image is taken from. (a) When viewed from
afar, projecting street view images onto every side of ev-
ery building results in occluded areas being textured with
inappropriate projections. (b) Therefore, we perform occlu-
sion test in the fragment shader and only project 360° im-
ages onto the visible surfaces. The occluded surfaces, such
as rooftops and occluded walled, are textured with solid col-
ors.

To avoid texturing sides of buildings which are occluded from the
street view, we use the fragment shader to detect whether individual
13Overpass: https://wiki.openstreetmap.org/Overpass_API

faces of the geometry are occluded in the street view images, as
illustrated in Figure 7. To accomplish this, we compare the normal
vector n with the previous vector pointing to the building face d. If
⟨n,−d⟩ < 0, or equivalently ⟨n, d⟩ > 0, we conclude that the angle
between n and −d is greater than 90 degrees so the current face is
occluded in the street view images. Instead of using the street view
images, we texture occluded faces with a solid color.

5 EVALUATION AND DEPLOYMENT
Our rendering pipeline is implemented in WebGL and Three.js14,
a cross-browser and GPU-accelerated Javascript library. We evalu-
ate the performance of our system in various platforms and present
live demos in Geollery15.

5.1 Performance on Different Platforms
To evaluate the performance of our real-time approach, we test
our approach on mobile phones, workstations, and head-mounted
displays. On a workstation equipped with an NVIDIA GTX 1080
GPU, we observed that it takes about 12ms to ship each 4096× 2048
resolution street view image to the GPU after being decoded and
stitched together in a background thread. For higher resolution
360° images, such as 8192 × 4096, it takes 40ms to ship the texture
from system memory to the GPU. After the geometries are initial-
ized and all textures are cached on the GPU, we achieve rendering at
a fine level of detail at over 60 frames per second (fps). Furthermore,
our rendering pipeline takes merely 2.0 ms, leaving 14.6 ms of GPU
time to render additional objects.

In VR, our workstation is able to render at 90 fps to an Oculus
Rift. On an Android phone with a Snapdragon 835, we observed that
it takes about 100ms to ship each 4096× 2048 resolution 360° image
to the GPU. Afterwards, we achieve an average of 30 fps rendering
close-up views. On an iPhone XS with an A12 bionic chip, the frame
rate is around 40 fps. At a coarse level of detail when viewed from
afar, the rendering performance becomes dependent on the number
of buildings within view and the complexity of the buildings. In our
testing, we are able maintain a smooth 60 fps on our workstations
rendering to monitors and 90 fps rendering to an Oculus Rift with
about 50 buildings visible in New York City .

5.2 Deployment and Implementation Details
To demonstrate an application of our method, we have incorporated
our approach into a novel mixed-reality social platform, Geollery,
as shown in Figure 8. Geollery is hosted on Amazon Web Services
(AWS) and allows multiple users to see, chat, and collaborate with
each other with virtual avatars. While this paper focuses on the
technical aspect, we refer the readers to [23] for our design process
and user study for the social platform.

In Geollery, we use a Least Recently Used (LRU) cache16 to store
five most recent 360° street views and depth images. This enables us
to quickly fetch the previously accessed data from memory as users
walk around, minimizing bandwidth utilization and improving re-
sponsiveness. When switching between the fine and coarse detail

14Three.js: http://www.threejs.org
15Geollery: https://geollery.com
16JS-LRU: https://github.com/rsms/js-lru
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Figure 8: Real-time rendering results from Geollery, where
theNational Geollery of Art is reconstructedwith geotagged
social media when viewed from afar.

(use scrolling on workstation or pinch gestures on mobile plat-
forms), our system apply an animated alpha blending to smoothly
fade in the new geometries.

By fusing multiple street view images, we are able to cover a
larger area resulting in fewer updates for loading new panoramas.
Nevertheless, there is a trade-off between performance and creating
many fine-detail geometries as each geometry has 131,074 vertices
to be processed by the GPU. In the future, we intend to evaluate the
possibility of fusing more than two street view geometries together.
Fusing five or more street view images would create a larger en-
vironment making our approach more immersive for interactive
applications. Additionally, only the farthest street view would need
to be updated as the camera moves within the environment, making
the loading of additional geometries less noticeable to users.

Since the debut of Geollery.com, we have attracted 733 individual
users across 25 countries so far. During the onsite demonstration
in Glasgow, United Kingdom, at CHI 2019 [22], Geollery was also
presented to over 3,700 attendees. In addition to the study we con-
ducted and reported with the first version [22, 23], we have received
a few emails with feedback from the online community:

“Geollery/Social Street View has its own set of distinct
offerings, as it is anchored within real-world settings,
just mapped onto VR, whereas these are definitely more
‘fantasy’ type of arenas. In that way, as you have al-
ready done, I think there are multitude game chal-
lenges/tasks/feedback, like the balloons, to add in!”

“I think it’d be cool if you could see posts by people in
real time, along with the establishment they’re in (like
someone tweeting from inside McDonald’s or a movie
theater), if that makes sense. Sort of like checking in to
a place on Facebook.”

5.3 Limitations
While we have demonstrated a real-time pipeline for fusingmultiple
360° images, our system is not without limitations as discussed next.

5.3.1 Inaccurate Metadata. Both of our approaches rely on clean
and high-quality metadata, including the raw depth map, building
polygons, and their heights.

At a fine level of detail for close-up views, we use Google Street
View images and their depthmaps. Google Street View’s depthmaps
are filtered to remove pedestrians and vehicles but do not manage
to filter out everything. Sometimes, obstacles such as construction
zones and parked trucks cause distortions in the geometries we
generate from the depth map as seen in Figure 9. These vehicles
cause the resulting geometry to have undesirable indents into the
road, representing the obstacle rather than the buildings behind it.

(a) inaccurate raw depth map (b) resulting occlusion

Figure 9: (a) shows an inaccurate depth map from Google
Street View. The rightmost polygon within the blue circle is
a typical example of noise caused by obstacles such as large
vehicles. (b) shows how the large vehicle blocks the depth
sensors used by Google Street View. Vertices are pulled into
the middle of the road to represent the truck instead of
the buildings behind it. The depth map is visualized in a
yellow-red-black color scheme, with code provided at https:
//shadertoy.com/view/llVBDD.

When viewed from afar, we use OpenStreetMap to construct
building geometries. However, OpenStreetMap occasionally reports
inaccurate or missing values for building heights as their data is
crowd-sourced.

5.3.2 Level-of-Detail of Geometries. For our rendering pipeline in
fine detail, each geometry results in 131,074 vertices regardless
of the complexity of the ground truth. Reducing the number of
vertices in the geometry would greatly improve the performance
of our approach. As of May 2019, compute shaders in WebGL run
merely on Google Chrome or Microsoft Edge Insider launched
with debugging flags. Besides, altering the number of vertices on
the CPU may result in a severe performance penalty. We envision
future systems may use a view-dependent strategy and determine
the level of tessellation with the geometry shader on the GPU.
Foveated rendering [30, 41] may also be adopted to accelerate the
frame rate on low-end mobile phones or laptops.

6 CONCLUSION AND FUTURE VISION
In this paper, we have presented the technical pipeline behind
Geollery.com, including two real-time methods of reconstructing
a live mirrored world with geotagged social media. We discuss
challenges with each method and our approaches to addressing
them. Finally, we evaluate the performance and quality of each
approach on various platforms.

At a fine level of detail for close-up views, we reconstruct an
approximate geometry based on the depth maps associated with

https://shadertoy.com/view/llVBDD
https://shadertoy.com/view/llVBDD
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each street view and propose ways of seamlessly aligning the ad-
jacent street view geometries. This approach takes advantage of
the high resolution of the street view images while incorporating
low-resolution depth maps to generate an approximate geometry.
At a coarse level of detail when viewed from afar, we propose
the texturing of 3D geometries created from extruded 2D poly-
gons. Neither method requires any server-side preprocessing and
all client-side processing can be done in background threads for
interactive applications.

Figure 10: An experimental feature in Geollery.com allows
special users to place customized buildings to replace the
automatic reconstruction from the live streamed data. With
crowdsourcing from domain experts, a digital campus with
geotagged social media may recur in the mirrored world.

In future, one may evaluate additional methods for better ad-
dressing the limitations of our approach. Fast upsampling of the
depth map paired with noise removal using techniques from [38]
and [45] may result in smoother geometries that are better aligned
with buildings. Removing pedestrians and vehicles from street view
images using techniques similar to Flores and Belongie [28] may
eliminate the need to overlay lower resolution Google Maps satel-
lite images. Augmenting our outdoor reconstruction with indoor
buildings [27] will further increase the potential applications of our
approach. As the quality and quantity of publicly available data im-
proves, we hope our methods will enable large-scale applications to
take advantage of just-in-time high-resolution 3D reconstructions.

With the rapid advances in virtual and augmented reality, we
envision a system that fuses a variety of multimedia data to create
a vivid mirrored world [17], in which it fuses not only 360° im-
ages and geotagged social media [26], but also 3D reconstruction
of the user [58], mid-air sketches [49], data visualization of the
streaming events, and elaborately reconstructed museums and uni-
versity campuses [52](Figure 10). From the perspective of time, it
fuses the past events (geotagged images, text, videos, and holo-
graphic memories) with the present (live surveillance videos [18],
crowd-sourced 360° cameras, the user’s live telepresence [40, 44],
and haptic feedback [8, 21, 32, 33]), and look into the future by
learning the trajectory of pedestrians and cars, clustering the topics
and emotions of social media, and measuring the spatiotemporal
saliency of the real-time information in the world. Such a system
may eventually change the way we communicate with each other
and consume the information throughout the world.
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