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Figure 1: TheMontage4D algorithm stitchesmultiview video textures onto dynamicmeshes seamlessly and at interactive rates.
(A) inputs: dynamic triangle meshes reconstructed by the Fusion4D algorithm, multiview video textures, and camera poses;
(B) texture field blend weights in Holoportation, based on surface normals, majority voting, and dilated depth discontinuities;
(C) resulting Holoportation merged texture; (D) our improved texture fields, which favor the dominant view, ensure temporal
consistency, and reduce seams between camera views; (E) the resulting Montage4D merged texture.

ABSTRACT
The commoditization of virtual and augmented reality devices and
the availability of inexpensive consumer depth cameras have cat-
alyzed a resurgence of interest in spatiotemporal performance cap-
ture. Recent systems like Fusion4D and Holoportation address sev-
eral crucial problems in the real-time fusion of multiview depth
maps into volumetric and deformable representations. Nonetheless,
stitching multiview video textures onto dynamic meshes remains
challenging due to imprecise geometries, occlusion seams, and
critical time constraints. In this paper, we present a practical so-
lution towards real-time seamless texture montage for dynamic
multiview reconstruction. We build on the ideas of dilated depth
discontinuities and majority voting from Holoportation to reduce
ghosting effects when blending textures. In contrast to their ap-
proach, we determine the appropriate blend of textures per vertex
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using view-dependent rendering techniques, so as to avert fuzziness
caused by the ubiquitous normal-weighted blending. By leveraging
geodesics-guided diffusion and temporal texture fields, our algo-
rithm mitigates spatial occlusion seams while preserving temporal
consistency. Experiments demonstrate significant enhancement in
rendering quality, especially in detailed regions such as faces. We
envision a wide range of applications for Montage4D, including im-
mersive telepresence for business, training, and live entertainment.
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1 INTRODUCTION
With recent advances in consumer-level virtual and augmented real-
ity, several dynamic scene reconstruction systems have emerged, in-
cluding KinectFusion [Izadi et al. 2011], DynamicFusion [Newcombe
et al. 2015], Free-Viewpoint Video [Collet et al. 2015], and Holoporta-
tion [Orts-Escolano et al. 2016]. Such 4D reconstruction technology
is becoming a vital foundation for a diverse set of applications such
as 3D telepresence for business, live concert broadcasting, family
gatherings, and remote education.

Among these systems, Holoportation is the first to achieve real-
time, high-fidelity 4D reconstruction without any prior knowledge
of the imaged subjects. The success of this system builds upon
the breakthrough of fast non-rigid alignment algorithms in fusing
multiview depth streams into a volumetric representation by the
Fusion4D system [Dou et al. 2016]. Although Holoportation is able
to mitigate a variety of artifacts using techniques such as normal-
weighted blending and multilevel majority voting, some artifacts
persist. In a previous user study on Holoportation [Orts-Escolano
et al. 2016], around 30% of the participants did not find that the
reconstructed model real compared with a real person. We believe
that this is a significant challenge that must be addressed before
telepresence can be embraced by the masses. We also note that
the user feedback about visual quality was much less positive than
other aspects (speed and usability). This is caused by the blurring
and visible seams in the rendering results, especially on human
faces, as shown in Figure 1, 7, and 8.

Blurring. Loss of detail arises because of two reasons. First, tex-
ture projection from the camera to the geometry suffers from reg-
istration errors, causing visible seams. Second, normal-weighted
blending of the different views with different appearance attributes
(specular highlights and inconsistent color calibration) leads to an
inappropriate mixing of colors and therefore blurring or ghosting.

Visible Seams. We further characterize visible seams into: (1) pro-
jection seams caused by inaccurate estimation of camera parameters
, (2) misregistration seams caused by imprecise reconstruction of
geometry with shrinking/bulging surface patches, and (3) occlusion
seams arise out of discontinuous texture transitions across the field
of view of multiple cameras and self-occlusions. In a static and in-
door setting, we suppose the projection matrices are correct, since
both the extrinsics and intrinsics of the cameras can be perfectly
calibrated.

In this paper, we address both blurring and visible seams and
achieve seamless fusion of video textures at interactive rates. Our
algorithm estimates the misregistration and occlusion seams based
on the self-occlusion from dilated depth discontinuities, multi-level
majority voting, foreground segmentation, and the field-of-view of
the texture maps. To achieve a smooth transition from one view to
another, we compute geodesic distance fields [Bommes and Kobbelt
2007] from the seams, to spatially diffuse the texture fields to the
visible seams. In order to prevent view-dependent texture weights
from rapidly changing with the viewpoints, we extend the scalar
texture field as shown in Figure 1(C) to a temporally changing field
to smoothly update the texture weights. As shown in Figure 1(D)
and 8, our system achieves significantly higher visual quality at

interactive rates compared to the state-of-the-art Holoportation
system.

In summary, the main contributions of our work are:
• formulation and quantification of the misregistration and
occlusion seams for fusing multiview video textures,
• use of equidistance geodesics from the seams based on dis-
crete differential geometry concepts to diffuse texture fields,
• temporal texture fields to achieve temporal consistency of
the rendered imagery, and
• a fast computational pipeline for high-fidelity, seamless video-
based rendering, enabling effective telepresence.

2 RELATEDWORK
We build upon a rich literature of prior art on image-based 3D
reconstruction, texture stitching, and discrete geodesics.

2.1 Image-based 3D Reconstruction
Image-based 3D reconstruction has been researched extensively
in the past decades. The pioneering work of Fuchs et al. [1994;
1993] envisioned that a patient on the operating table could be
acquired by a sea of structured-light cameras, and a remote doctor
could conduct medical teleconsultation with a head-mounted dis-
play. Kanade et al. [1997] invented one of the earliest systems that
uses a dome of cameras to generate novel views via triangulated
depth maps. Its successor, 3D Dome [Narayanan et al. 1998], recon-
structs explicit surfaces with projected texture. Towles et al. [2002]
achieve real-time 3D telepresence over networks using 3D point
clouds. Goldluecke et al. [2004] adopt spatiotemporal level sets for
volumetric reconstruction. Furukawa et al. [2008] reconstruct de-
formable meshes by optimizing traces of vertices over time. While
compelling, it takes two minutes on a dual Xeon 3.2 GHz worksta-
tion to process a single frame. De et al. [2008] present a system
that reconstructs space-time coherent geometry with motion and
textural surface appearance of actors performing complex and rapid
moves. However, this also suffers from slow processing speed (ap-
proximately 10 minutes per frame), largely due to challenges in
stereo matching and optimization. Since then, a number of advances
have been made in dealing with video constraints and rendering
quality [Cagniart et al. 2010; Casas et al. 2013; Collet et al. 2015;
Du et al. 2016; Lok 2001; Patro et al. 2011; Prada et al. 2016, 2017a;
Vlasic et al. 2008; Xu et al. 2011], but rendering dynamic scenes in
real time from video streams has remained a challenge. Zitnick et
al. [2004] present an efficient rendering system which interpolates
the adjacent two views with a boundary layer and video matting.
However, they consider a 2.5D layered representation for the scene
geometry rather than a general mesh model that can be viewed
from all directions. Their work inspires us with the computation of
depth discontinuity and seam diffusion.

With recent advances in consumer-level depth sensors, several
reconstruction systems can now generate dynamic point-cloud ge-
ometries. KinectFusion [Izadi et al. 2011; Newcombe et al. 2011] is
the first system that tracks and fuses point clouds into dense meshes
using a single depth sensor. However, the initial version of Kinect-
Fusion can not handle dynamic scenes. The systems developed by
Ye et al. [2014] and Zhang et al. [2014] are able to reconstruct non-
rigid motion for articulated objects, such as human bodies and
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animals. Further advances by Newcombe et al. [2015] and Xu et
al. [2015] have achieved more robust dynamic 3D reconstruction
from a single Kinect sensor by using warp-fields or subspaces for
the surface deformation. Both techniques warp a reference volume
non-rigidly to each new input frame. Guo et al. [2015; 2017] and
Yu et al. [2017] have realized real-time geometry, albedo, and mo-
tion reconstruction using a single RGB-D camera. However, the
reconstructed scenes still suffer from the occlusion issues since
the data comes from a single depth sensor. In addition, many 3D
reconstruction systems rely on a volumetric model that is used for
model fitting, which is limited in accommodating fast movement
and major shape changes.

Collet et al. [2015] have demonstrated the Free-Viewpoint Video,
an offline pipeline to reconstruct dynamic textured models in a stu-
dio setup with 106 cameras. However, it requires controlled lighting,
calibration, and approximately 28minutes per frame for reconstruc-
tion, texturing, and compression. Furthermore, Prada et al. [2016;
2017a] present a unified framework for evolving the mesh triangles
and the spatio-temporal parametric texture atlas. Nonetheless, the
average processing time for a single frame is around 80 seconds,
which is not yet applicable for real-time applications.

Orts et al. [2016] present Holoportation, a real-time pipeline to
capture dynamic 3D scenes by using multiple RGBD cameras. This
system is highly robust to sudden motion and large changes in
meshes. To achieve real-time performance, their system blends
multi-view textures according to the dot product between surface
normals and the camera viewpoint directions.

Our system extends the Holoportation system and solves the
problems of fuzziness caused by normal-weighted blending, visible
seams caused by misregistration and occlusion, while ensuring
temporal consistency of the rendered images.

In the state-of-the-art work by Dou et al. [2017] with depth maps
generated up to 500Hz [2017a; 2017b], a detail layer is computed to
capture the high-frequency details and atlas mapping is applied to
improve the color fidelity. Our rendering system is compatible with
the new fusion pipeline, by integrating the computation of seams,
geodesic fields, and view-dependent rendering modules.

2.2 Texture Stitching
View-dependent texture-mapping on the GPU has been widely
applied for reconstructed 3D models since the seminal work by
Debevec et al. [1998a; 1998b]. However, seamlessly texturing an
object by stitching RGB images remains a challenging problem
due to inexact geometry, varying lighting conditions, as well as
imprecise calibration matrices.

Previous work has considered using global optimization algo-
rithms to improve color-mapping fidelity in static models. For exam-
ple, Gal et al. [2010] present a multi-label graph-cut optimization
approach that assigns compatible textures to adjacent triangles
to minimize the seams on the surface. In addition to the source
images, their algorithm also searches over a set of local image
transformations that compensate for geometric misalignment us-
ing a discrete labeling algorithm. While highly creative and elegant,
their approach takes 7 to 30 minutes to process one frame on a
mesh with 10,000 to 18,000 triangles. Markov Random Field (MRF)
optimization-based approaches [Allène et al. 2008; Janko and Pons

2009; Lempitsky and Ivanov 2007] are also similarly time intensive.
To reduce the seams caused by different lighting conditions, Zhou et
al. [2005] introduce TextureMontage, which automatically partitions
the mesh and the images, driven solely by feature correspondences.
TextureMontage integrates a surface texture in-painting technique
to fill in the remaining charts of the surface with no corresponding
texture patches. However, their approach takes over 30 minutes
per frame to process. Zhou et al. [2014] optimize camera poses in
tandem with non-rigid correction functions for all images at the
cost of over 30 minutes per frame. Narayan et al. [2015] jointly
optimize a non-linear least squares objective function over camera
poses and a mesh color model at the cost of one to five minutes per
frame. They incorporate 2D texture cues, vertex color smoothing,
and texture-adaptive camera viewpoint selection into the objective
function.

A variety of optical-flow-based approaches have been used to
eliminate blurring and ghosting artifacts. For example, Eisemann et
al. [2008] introduce Floating Texture, a view-dependent rendering
technique with screen-based optical-flow running at 7-22 frames
per second.1 Casas et al. [2014] extend their online alignment
with spatio-temporal coherence running at 18 frames per second.
Volino et al. [2014] employs a surface-based optical flow align-
ment between views to eliminate blurring and ghosting artifacts.
However, the major limitation of optical-flow-based approaches
are twofold. First, surface specularity [Eisemann et al. 2008], com-
plex deformations, poor color calibration and low-resolution of the
textures [Casas et al. 2014] present challenges in the optical flow
estimation. Second, even with GPU computation, the computational
overhead of optical flow is still a limitation for real-time rendering.
This overhead increases even further with more cameras.

In studio settings, Collet et al. [2015] have found that with dif-
fused lighting condition and precisely reconstructed surface geome-
try, direct image projection followed by normal-weighted blending
of non-occluded images yields sufficiently accurate results. How-
ever, for real-time reconstruction systems with a limited number
of cameras, the reconstructed geometries are often imperfect.

Our work focuses on improving the texture fusion for such real-
time applications. Building upon the pioneering research above as
well as the work of several others, our approach is able to process
over 130,000 triangles at over 100 frames per second.

2.3 Geodesic Distance Fields
The field of discrete geodesics has witnessed impressive advances
over the last decade [do Goes et al. 2015; Grinspun et al. 2006;
Mitchell 2000]. Geodesics on smooth surfaces are the straightest
and locally shortest curves and have been widely used in a va-
riety of graphics applications such as optimal movement of an
animated subject. Mitchell et al. [1987] devise an exact algorithm
for computing the “single source, all destinations” geodesic paths.
For each edge, their algorithm maintains a set of tuples (windows)
for the exact distance fields and directions, and updates the win-
dows with a priority queue like the Dijkstra algorithm. However,
the worst running time could be O

(
n2 logn

)
, and the average is

close to O
(
n1.5

)
[Bommes and Kobbelt 2007; Surazhsky et al. 2005].

1We tested Floating Texture on a GTX 1080 under target resolution of 1024 × 1024 and
2048 × 2048.
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Input triangle meshes
from Fusion4D

Rasterized depth maps
Discrete geodesic distance fields to 
diffuse texture fields from the seams

Update temporal texture fields

Montage4D Results

Texture maps with foreground segmentation

Seams caused by 
 misregistration 
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Figure 2: The workflow of the Montage4D rendering pipeline.

Recently, Qin et al. [2016] proposes a 4-15 times faster algorithm us-
ing window pruning strategies. However, their algorithm aims for
the exact geodesic paths and requires O

(
n2

)
space like the previous

approaches. Kapoor [1999] proposes a sophisticated approach for
the “single source, single destination” case in O

(
n log2 n

)
time. As

for approximate geodesics, Lanthier [1997] describes an algorithm
that adds many extra edges into the mesh. Kanai and Suzuki [2001]
and Martinez et al. [2004] use iterative optimization to converge
the geodesic path locally. However, their methods require a large
number of iterations.

In this work, we compute geodesics distance fields for weighting
the texture fields, so as to assign low weight near the seams and
progressively larger weight up to some maximum distance away
from the seams. Our goal is to solve the geodesics problem for the
“multiple sources, all destinations”. Bommes et al. [2007] have intro-
duced an accurate algorithm for computation of geodesic distance
fields. In this paper, we follow a variant of the efficient algorithm
developed by Surazhsky et al. [2005] to measure the approximation
of the geodesics fields in O(n logn) time for a small number of ver-
tices (seam vertices are approximately 1% of the total vertices) in a
few iterations (typically 15 − 20).

3 SYSTEM OVERVIEW
In this section we present the workflow of the Montage4D system
as shown in Figure 2:

(1) Streaming of Meshes and Videos: Our system streams
polygonal meshes and video textures from a reconstruction
server that runs the Fusion4D pipeline [Dou et al. 2016]. The
calibration parameters for projective mapping from camera
to model space are only transferred once with the initial
frame.

(2) Rasterized depth maps and segmented texture maps:
For each frame, Montage4D estimates rasterized depth maps
from each camera’s viewpoint and perspective in parallel on
the GPU. The video textures are processedwith a background
subtraction module, using the efficient real-time algorithm
performing mean field inference [Vineet et al. 2014].

(3) Seam identificationwith dilated depth discontinuities:
The renderer estimates the dilated depth discontinuities from

the rasterized depth maps, which are bounded by an esti-
mated reconstruction error e . This is crucial for reducing
ghosting artifacts, which arise when missing geometry and
self-occlusion cause incorrect color projection onto surfaces.
The renderer uses the texture maps to calculate the seams
due to each camera’s limited field of view.

(4) Geodesic fields: After the seam identification stage, the ren-
derer calculates the geodesic distance field from the seams
to neighboring vertices. This distance field is used to nonlin-
early modulate the texture fields, ensuring spatial smooth-
ness of the resulting texture fields.

(5) Temporal texture fields: Using the parameters of the ren-
dering camera, the renderer also computes the view-dependent
weights of each texture. However, should an abrupt jump
in viewpoint occur, the texture weights field can change
rapidly. To overcome this challenge,Montage4D employs the
concept of temporal texture weights so that texture weights
transition smoothly over time.

(6) Color synthesis and post-processing: We fuse the sam-
pled color using the temporal texture fields for each pixel
in screen space. Our system also provides an optional post-
processing module for screen-space ambient occlusion.

4 ALGORITHMS
In this section, we describe the how we elaborate each step of
Montage4D.

4.1 Formulation and Goals
For each frame, given a triangle mesh and N video texture maps
M1,M2, · · · ,MN streamed from the dedicated Fusion4D servers,
our goal is to assign for each mesh vertex v a vector (T 1

v , . . . ,T
N
v )

of scalar texture weights. Let the texture field T denote the piece-
wise linear interpolation of these vectors over the triangle mesh. For
each non-occluded vertex v ∈ R3, we calculate a pair of correspond-
ing (u,v) coordinates for each texture map using back-projection.
Finally, the resulting color cv is fused using the normalized texture
field Tv at vertex v:

cv =
N∑
i=1

civ · T
i
v =

N∑
i=1

texture (Mi ,u,v) · T
i
v (1)
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In order to achieve high-quality rendering, we need to take the
following factors into consideration:

(1) Smoothness: The transition between the texture fields of
adjacent vertices should be smooth, because human percep-
tion is especially sensitive to texture discontinuities.

(2) Sharpness: The rendered image should preserve the fine-
scale detail of the input textures. However, due to imprecisely
reconstructed geometry, fusing all the textures onto themesh
usually results in blurring or ghosting artifacts.

(3) TemporalConsistency: The texture fields should vary smoothly
over time as the mesh changes and as a user’s viewpoint
changes.

(A) Raw Projection Mapping (B) After Occlusion Test (C) Dilation and Color Voting

(D) Reference Mesh (E) Results of Holoportation (F) Results of Montage4D

Figure 3: This figure shows how texture weight fields im-
prove the rendering quality compared to the baseline ap-
proach. Holoportation removes several ghosting artifacts by
taking advantage of dilated depth maps and majority vot-
ing algorithm (top row), however, the rendering still suffers
from fuzziness and visible seams (bottom row). (A) shows
the raw projection mapping result from an input video tex-
ture, (B) shows the culling result after the occlusion test, (C)
shows the culling result after using dilated depth maps and
majority voting algorithm, (D) shows the input mesh, (E)
and (F) respectively shows the rendering results from the
baseline approach and our algorithm, together with the cor-
responding texture weight fields for comparison.

4.2 Normal Weighted Blending with Dilated
Depth Maps and Coarse-to-Fine Majority
Voting Strategy

Our baseline approach is derived from the real-time implementation
in the Holoportation project. This approach uses normal-weighted

blending of non-occluded textures, together with a coarse-to-fine
majority voting strategy. For each vertex v, the texture field T i

v for
the ith view is defined as

T i
v = Vv ·max (0, n̂v · v̂i )α , (2)

where Vv is a visibility test using dilated depth maps and multi-
level majority voting algorithm introduced later, n̂v is the smoothed
normal vector at vertex v, v̂i is the view direction of the ith camera,
and α determines the smoothness of the transition, and favors the
frontal views. This approach determines the texture fields purely
based on the geometry, which may have missing or extruded tri-
angles. The resulting texture fields may favor completely different
views, thus introducing visible seams.

In order to remove the ghosting effect, we adopt the method
from the Holoportation project, which uses a dilated depth map to
detect the occluded regions as shown in Figure 3(C), thus remov-
ing many artifacts caused by inexact geometries: For each input
view, we create a rasterized depth map of the surface and identify
depth discontinuities using a filter radius determined by ϵ = 4
pixels. Then, when rendering the surface mesh, within the pixel
shader, we look up each depth map to see if the point lies within
the discontinuous region. If such a discontinuity is found, we set
T i
v = 0.
In addition, we also adopt the same multi-level majority voting

strategy. For a given vertex v and texture map Mi , we search from
coarse to fine levels, the sampled color civ is trusted if at least half
of the visible views (we denote the number of visible views as X )
agree with it in the Lab color space, here δ = 0.15:

N∑
j=1, j,i

(���civ − c jv��� < δ
)
≥

⌊
X

2

⌋
(3)

Although the dilated depth maps and multilevel majority voting
strategy can mitigate most of the ghosting effects in real time (Fig-
ure 3(C)) the rendering results still suffer from blurring and visible
seams, as shown in Figure 3(E).

4.3 Computing Misregistration and Occlusion
Seams

Our algorithm identifies each triangle as a misregistration or occlu-
sion seam when any of the following three cases occur:

(1) Self-occlusion: One or two vertices of the triangle are oc-
cluded in the dilated depth map while the others are not.

(2) Majority voting: The triangle vertices have different results
in the majority voting process, which may be caused by
either misregistration or self-occlusion.

(3) Field of View: One or two triangle vertices lie outside the
camera’s field of view or in the subtracted background region
while the rest are not.

Some of these examples are shown in Figure 4.
For the datasets acquired for real-time telepresence applications

we have observed the fraction of seam triangles to be less than 1%.
This observation has guided us to process the triangles adjacent
to the seams, using a propagation procedure by calculating the
geodesics directly on the GPU.
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(A) Raw projection mapping        (B) Seams after occlusion test      (C) Seams after majority voting

            (D) Raw projection mapping                                      (E) Seams caused by field-of-view

Figure 4: Examples of misregistration and occlusion seams.
(A) shows the raw projection mapping result of a monkey
toy in front of a plaid shirt, (B) shows the seams after the
occlusion test with dilated depth maps, and (C) shows the
seams after themajority voting test. Note that while (B) fails
to remove some ghosting artifacts from the monkey toy, (C)
removes most of them. (D) shows another projection onto a
crane toy, (E) shows the seams identified by the field-of-view
test.

4.4 Discrete Geodesic Distance Field for
Diffusing Seams

We efficiently diffuse the texture fields using the geodesic distance
fields, by making a tradeoff between accuracy and efficiency of
the resulting diffusion. We follow a variant of the highly efficient
approximation algorithm described in [Surazhsky et al. 2005], by
computing the geodesics distance fields from a set of vertices rather
than a single vertex as follows:

Let S be a piecewise planar surface defined by the triangle mesh.
We define the geodesic distance function as D (·) : S 7→ R. In an
earlier stage, we extracted the vertices from the seam trianglesVs ∈
S as the source vertices. For any point p ∈ S , the algorithm returns
the length of the geodesic path D (p) from p back to the closest
seam vertex v ∈ Vs . We iteratively diffuse across the triangles from
the seams towards the non-occluded triangles.

As illustrated in Figure 5, for each edge e , we maintain a small
number of windows w(e) consisting of a pair of coordinates (cl , cr )
(counterclockwise), the corresponding geodesic distance (dl ,dr )
to the closest pseudosource source s , the direction of the geodesic
path τ , and the geodesic length σ = D (s). The position of s can be
calculated by intersecting two circles. As suggested by [Surazhsky
et al. 2005], when propagating a window w1(e) with an existing
windoww0(e) on the same edge, we try to merge the two windows
w ′ ← w0(e) ∪w1(e), if the directions τ0,τ2 agree with each other,
and the estimated geodesic lengths are within a bounded error:
|D (w0) − D (w1)| < ε .

In order to achieve interactive rates for rendering, we march
at most k = 15 triangles from the seams in K = 20 iterations. In

s0 s1
s

dl dr

cl cr

s’

c’l c’rτ

Vs

w
w

(A) (B) (C)

w’=w0∪w1

σ
Vs

Figure 5: Illustration of computing the approximate
geodesics. (A) shows the concept of the geodesic window
from a single source vertex. (B) shows the components
within a window. (C) shows the merging process of two
overlapping windows for approximation.

this propagation process, we maintain two windows per edge and
discard the rest. We chose the parameter k < K so that each vertex’s
minimum geodesic distance field could be updated from the vertices
that are K − k edges away. As Figure 6 shows, this compromise
gives us visually pleasing results for diffusing the texture fields
spatially near the seams.

    Seams                   Iteration 1              Iteration 2              Iteration 4

   Iteration 6              Iteration 10             Iteration 15           Iteration 20

Figure 6: Examples of the initial seam triangles and the prop-
agation process for updating the geodesic distance field.

4.5 Temporal Texture Fields
To prevent the texture weights from changing too fast during view
transitions, we use target texture fields and temporal texture fields.
The target texture fields are determined using view-dependent
texture weights and occlusion seams:

Tiv = Vv · д
i · γ iv ·max (0, v̂ · v̂i )α , (4)

where, Vv is the original visibility test at vertex vwith dilated depth
maps and multi-level majority voting, дi is a normalized global
visibility score of each view, which is calculated by the number of
visible vertices from each view. Therefore, дi reduces weights for
less significant views. γ iv is the minimum length of the equidistance
geodesics to the seams for the texture mapMi , v̂ is the view vector
from the current user’s camera to the vertex v, v̂i is the view vector
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Color Scheme for the Texture Fields

H0

M0

H1

M1

Figure 7: Spatiotemporal comparison of the rendered results (H0, M0) and corresponding texture fields (H1, M1) forHoloporta-
tion (H0, H1) andMontage4D (M0, M1) across 8 viewpoints and 40 frames. As shown in the figures,Montage4D takes advantage
of view-dependent rendering while mitigating visible seams. In addition, temporal texture weights facilitate smooth transi-
tions in space and time. Please see the accompanying video for a temporal comparison.

of the ith camera, and α determines the smoothness of the transition.
We use temporal texture fields to handle the temporal artifacts as
follows:

T i
v (t) = (1 − λ)T

i
v (t − 1) + λT

i
v (t) , (5)

where, T i
v (t) represents the temporal texture field at vertex v at

frame t and the time constant λ determines the transition rate of
the texture fields: λ = 0.05.

We normalize the texture fields and fuse the sampled colors us-
ing the Equation 1. For highly occluded regions, if

∑
i γ

i
v < 1, we

preserve the result from normal-weighted blending to fill in the
black pixels. We discuss the limitations of this compromise in Sec-
tion 6. Figure 7 shows comparative results between Holoportation
and Montage4D.

5 EXPERIMENTAL RESULTS
5.1 Comparison with the Holoportation

Approach
We implement our rendering pipeline using the multi-pass compute,
vertex, and fragment shaders with DirectX 11, and conduct quanti-
tative analysis on a commodity workstation with a GeForce GTX
1080 graphics card with 8 GB frame buffers. We evaluate our results
with five recorded datasets with a Fusion4D program running in the
background to feed the reconstructed meshes and video textures to
Montage4D. These datasets cover a wide range of subjects, including
children, adults, and air-inflated toys with specular highlights. Each

dataset contains at least 500 frames, and each frame contains at
least 130, 000 vertices, 250, 000 triangles, and 8 video texture maps
at the resolution of 2048×2048 pixels. The average frame rate of the
video textures is 25 frames per second (FPS). As in the Holoportation
project, all incoming data is decompressed using the LZ4 algorithm
prior to its ingestion in the rendering pipeline.

First, we conduct a cross-validation experiment over the five
datasets between the ground truth image from each camera’s per-
spective and the rendering results of the Holoportation or Mon-
tage4D renderer. We demonstrate the quantitative results using the
average of the root mean square error (RMSE) of the RGB color
values, the structural similarity (SSIM) [Wang et al. 2004], and peak
signal-to-noise ratio (PSNR). The results are shown in Table 1. We
can see thatMontage4D achieves higher image quality (lower RMSE,
higher SSIM and PSNR) while maintaining interactive frame rates
for virtual reality applications.

Next, we visually compare the quality and sharpness of the
rendered images from novel views, as illustrated in Figure 8.We also
show the input meshes and representative back-projected images.
Although the approach taken in the Holoportation project is able
to render textured meshes smoothly and eliminates most of the
ghosting artifacts, it often fails to preserve the fine details such as
human faces. In contrast, the Montage4D renderer preserves the
details from the dominating views using view-dependent texture
weights and transitions smoothly using the temporal texture fields.
Meanwhile, the diffusion process in Montage4D is able to remove
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Holoportation
Orts-Escolano et al.

Representative
Projection #1

Representative
Projection #2

Montage4D 
Results

Fusion4D Inputs
Dou et al.

* The parameters of Fusion4D are tuned for real-time Holoportation experience, which may result in coarser meshes.

Figure 8: Comparison with the Holoportation approach. From left to right: the input mesh generated by Fusion4D, two repre-
sentative back-projected images, and the rendering results from Holoportation and our Montage4D system.
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Table 1: Comparison between Holoportation andMontage4D in cross-validation experiments

Dataset Frames #vertices / frame #triangles / frame Holoporation Montage4D
RMSE SSIM PSNR FPS RMSE SSIM PSNR FPS

Timo 837 131K 251K 5.63% 0.9805 38.60dB 227.2 3.27% 0.9905 40.23dB 135.0
Yury 803 132K 312K 5.44% 0.9695 39.20dB 222.8 3.01% 0.9826 40.52dB 130.5
Sergio 837 215K 404K 7.74% 0.9704 29.84dB 186.8 4.21% 0.9813 30.09dB 114.3
Girl 1192 173K 367K 7.16% 0.9691 36.28dB 212.56 3.73% 0.9864 36.73dB 119.4
Julien 526 157K 339K 12.63% 0.9511 33.94dB 215.18 6.71% 0.9697 35.05dB 120.6

Table 2: Timing comparison between Holoportation and
Montage4D for a new frame of geometry. Geometry and tex-
tures are streamed at around 30 fps.

Procedure Timing (ms)
Holoportation Montage4D

Communication between CPU and GPU 4.83 9.49

Rendering and Texture Sampling 0.11 0.30

Rasterized Depth Maps calculation 0.14 0.13

Seams Identification N/A 0.01

Approximate Geodesics estimation N/A 0.31

Other events 0.12 0.18

Total 5.11 10.40

most of the mis-registration and occlusion seams that occur in the
representative back-projections.

Additionally, we use the Unity profiler to analyze and compare
the timing for a typical frame of the Sergio dataset. As shown
in Table 2, the main difference between the two approaches is
data transfer time between CPU and GPU. In addition to copying
buffers for vertex indices and positions, theMontage4D system also
transfers compute buffers for geodesics, texture fields, and seam
factors, which induces a small overhead over the original approach.
However, dispatching the diffusion kernels does not impact the
frame rate much and the overall timing is still satisfactory for
interactive applications.

6 LIMITATIONS
Even though we have demonstrated a real-time pipeline for seam-
lessly fusing multiview videos with dynamic meshes, our system is
not without limitations as discussed next.

6.1 Inaccurate Geometries
As shown in Figure 9(A), our system suffers artifacts resulting from
the extruded triangles reconstructed during very fast motion. It
should be possible to use a remeshing algorithm [Alliez et al. 2002;
Qu and Meyer 2006] to tackle such problems. With the state-of-the-
art Motion2Fusion reconstruction pipeline [Dou et al. 2017], such
artifacts may be eliminated with more accurate geometries.

(A) Artifacts caused by extruded triangles

(B) Holes caused by insufficient reliable colors

Figure 9: Limitations of our approach. Extruded triangles
and highly-occluded spots may still cause artifacts.

6.2 Missing Texture Fields
Figure 9(B) shows the challenging issue caused by insufficient
reliable colors. Such problems may be solved by user-guided in-
painting and seamless cloning, which are proposed in the offline
TextureMontage system [Zhou et al. 2005]. However, for interactive
applications, it will be ideal if one could achieve such interpolation
with minimal overhead without the user’s intervention.

7 CONCLUSION AND FUTUREWORK
In this paper, we have presented Montage4D, an interactive and
real-time solution to blend multiple video textures onto dynamic
meshes with nearly indiscernible view transitions. We improve
on previous Holoportation renderer by adopting view-dependent
rendering, seam identification, diffusion based on geodesic distance
fields, and smooth transition using temporal texture fields. Our
technique offers sharper images than previous interactive texturing
algorithms, allowing users to observe fine facial expressions for
immersive telepresence and communication. Recently, in collabora-
tion with theMobile Holoportation team, we have already integrated
theMontage4D pipeline with the interactive live streaming platform
Mixer2.

2Mixer: https://mixer.com

https://mixer.com
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In the future, we would like to further integrate the Montage4D
texturing pipeline with the cloud-based scene acquisition servers.
By incorporating the user’s view directions, the acquisition servers
could progressively synthesize a compact view-dependent video
texture atlas directly on the client side, thus greatly reducing the
bandwidth requirement. We would like to investigate adaptive
and efficient optical flow algorithms over the mesh surface [Prada
et al. 2016, 2017b] to further optimize the texture fields. In the
supplementary materials, we identify some challenges with the
screen-based optical flow approach [Eisemann et al. 2008; Eisemann
and Magnor 2007]. We observe that surface specularity and poor
color calibration may result visible artifacts using screen-space
optical flow. One may take advantage of real-time texture filtering
algorithms such as [Chajdas et al. 2011; Crassin et al. 2015; Heitz
et al. 2013; Mavridis and Papaioannou 2011; Shirley et al. 2011], or
Poisson blending [Pérez et al. 2003] over the 3D space [Chuang
et al. 2009] to eliminate the artifacts. In addition, we would like to
investigate adaptive and efficient optical flow algorithms over the
mesh surface [Prada et al. 2016].

We envision our algorithm to be useful for many virtual and
augmented reality applications, such as remote business meetings,
medical training, and live social events.
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