
DepthLab: Real-time 3D Interaction with Depth Maps for
Mobile Augmented Reality

Ruofei Du, Eric Turner, Maksym Dzitsiuk, Luca Prasso, Ivo Duarte, Jason Dourgarian,
Joao Afonso, Jose Pascoal, Josh Gladstone, Nuno Cruces, Shahram Izadi, Adarsh Kowdle,

Konstantine Tsotsos, David Kim†

Google LLC

(a) oriented reticles and splats (b) ray-marching-based scene relighting (c) depth visualization and particles

(d) geometry-aware collisions (e) 3D-anchored focus and aperture effect (f) occlusion and path planning

Figure 1. Real-time interactive components enabled by DepthLab: (a) virtual texture decals “splatting” onto physical trees and a white oriented reticle

as a 3D virtual cursor; (b) relighting of a physical scene with three virtual point lights; (c) AR rain effect on dry stairs on the left and false-color

depth map on the right; (d) virtual objects colliding with physical exercise equipment; (e) “Bokeh”-like effect putting focus on a physical 3D anchor; (f)

occlusion and path planning in a mobile AR game. Please refer to the accompanying video captured in real time for more results.

ABSTRACT

Mobile devices with passive depth sensing capabilities are
ubiquitous, and recently active depth sensors have become
available on some tablets and AR/VR devices. Although real-
time depth data is accessible, its rich value to mainstream
AR applications has been sorely under-explored. Adoption
of depth-based UX has been impeded by the complexity of
performing even simple operations with raw depth data, such
as detecting intersections or constructing meshes. In this pa-
per, we introduce DepthLab, a software library that encap-
sulates a variety of depth-based UI/UX paradigms, includ-
ing geometry-aware rendering (occlusion, shadows), surface

†Corresponding author. Please contact Ruofei Du at
me@duruofei.com and/or David Kim at contact@davidkim.de.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

UIST ’20, October 20–23, 2020, Virtual Event, USA

© 2020 Copyright is held by the author/owner(s).

ACM ISBN 978-1-4503-7514-6/20/10.

http://dx.doi.org/10.1145/3379337.3415881

interaction behaviors (physics-based collisions, avatar path
planning), and visual effects (relighting, 3D-anchored focus
and aperture effects). We break down the usage of depth into
localized depth, surface depth, and dense depth, and describe
our real-time algorithms for interaction and rendering tasks.
We present the design process, system, and components of
DepthLab to streamline and centralize the development of
interactive depth features. We have open-sourced our software
at https://github.com/googlesamples/arcore-depth-lab to ex-
ternal developers, conducted performance evaluation, and dis-
cussed how DepthLab can accelerate the workflow of mobile
AR designers and developers. With DepthLab we aim to help
mobile developers to effortlessly integrate depth into their
AR experiences and amplify the expression of their creative
vision.

Author Keywords

Depth map; interactive 3D graphics; real time; interaction;
augmented reality; mobile AR; rendering; GPU; ARCore.

CCS Concepts

•Human-centered computing → Mixed / augmented real-
ity; User interface toolkits;

mailto:me@duruofei.com
mailto:contact@davidkim.de
https://github.com/googlesamples/arcore-depth-lab

INTRODUCTION

Augmented Reality (AR) has gained mainstream popularity,
as evidenced by Pokemon Go1, Snapchat2, and IKEA Place3

mobile AR experiences, among others. AR features have
become a commodity via wide platform-level support with
Google’s ARCore4 and Apple’s ARKit5. These features em-
power applications to place virtual objects anchored on flat
surfaces of the physical space or to invoke an experience as
a reaction to detected AR markers. More advanced features
are demonstrated on dedicated wearable AR devices, such as
Microsoft HoloLens6 and Magic Leap7, which include active
depth sensor hardware. Experiences on these devices use the
output of continuous environmental surface reconstruction to
enable geometry-aware object occlusions, shadow mapping,
and physics simulations. Our goal is to bring these advanced
features to mobile AR experiences without relying on dedi-
cated sensors or the need for computationally expensive sur-
face reconstruction.

Recent advances in mobile computer vision, demonstrated
by Valentin et al.[46], enable hundreds of millions of com-
patible Android devices running the ARCore Depth API8 to
estimate depth maps from a single moving camera in real time.
However, these depth maps have to be further processed to
be useful for rendering and interaction purposes in the appli-
cation layer. There is a large gap between this raw data and
the typical expertise of mobile application developers who are
not experienced in handling depth data (e.g., for collisions,
occlusion, shadows, and relighting).

To bridge this gap, we assembled and analyzed an exhaustive
list of 39 geometry-aware AR features, and found that by
applying alternative representations of depth data and a simple
depth development template, we could enable over 60% of
these features on mobile devices. More importantly, we could
do so through efficient and easy-to-use high-level interfaces.

Our contributions are summarized as follows:

• Analysis of geometry-aware AR features and their required
environmental representations.

• A depth development template leveraging three different
data representations without surface reconstruction.

• Real-time techniques for enabling geometry-aware shadows,
relighting, physics, and aperture effects in AR on general
smartphones, even with a single RGB camera.

1Pokemon Go: https://www.pokemongo.com
2Snapchat: https://www.snapchat.com
3IKEA Place: https://www.ikea.com/us/en/customer-service/
mobile-apps
4ARCore: https://developers.google.com/ar
5ARKit: https://developer.apple.com/documentation/arkit
6Microsoft HoloLens: https://microsoft.com/hololens
7Microsoft HoloLens: https://microsoft.com/hololens
8ARCore Depth API: https://developers.googleblog.com/2020/
06/a-new-wave-of-ar-realism-with-arcore-depth-api.html

• Open-sourced code library9 enabling AR developers with
depth-based capabilities with modular geometry-aware AR
features.

We believe our contributions will inspire the next generation
of AR applications, where scene-aware interactions, enabled
by accurate 3D information, are the key to seamless blending
of the virtual and the real world.

RELATED WORK

Our work is built upon existing mobile AR capabilities and is
inspired by prior art in mobile AR interactions, depth-based
libraries, use cases, and algorithms for head-mounted AR
displays.

Mobile AR Capabilities

Since the debut of the seminal ceiling-mounted AR system
in 1968 [42], AR has gradually diverged into head-mounted
displays and mobile devices. As portable computers in the
backpack and wearable AR displays emerge in 1990s [11, 45,
19], a line of research further investigated outdoor navigation
[14, 21], urban planning [36], tourism [5], social media [7, 8],
medical surgery [3], and AR games [44, 17, 50] in mobile AR
settings.

However, rendering and interaction capabilities in mobile de-
vices are traditionally limited by tracking feature points [2],
patterns [25], or detecting planes from the camera images [12].
Consequently, virtual objects may suffer from the “anchor
drift” problem [48] and the detected virtual planes may go
beyond the boundaries of the physical surfaces [31].

Motivated by these existing issues, DepthLab pushes the
boundary of physical-virtual rendering and interaction by of-
fering interactive modules including ray casting, per-pixel
occlusion test, collision detection, and more. Our work fo-
cuses on the interactive rendering space with passive depth
maps computed from a single RGB camera [46] in real time.

Recently, Xuan et al.[30] presented a novel offline deep-
learning pipeline to estimate depth maps from a single video
and render video-based visual effects. In contrast, our work
focuses on real-time algorithms and performance on a mobile
phone.

Depth-based Libraries and Use Cases

In recent years, commercial products such as Microsoft
Kinect10, Leap Motion11, and Project Tango have enabled
active depth sensing and boosted a line of research in 3D re-
construction [22, 32, 33], semantic segmentation [47], body
tracking [39, 57], indoor positioning [28], activity recognition
[1, 52], collaborative work [40], hand tracking [26, 38, 43],
touch detection [51, 53, 54], mixed-reality rendering [16, 55],
and gesture recognition [41, 27, 35].

Interactive systems, such as HoloDesk utilize depth [18] to en-
hance AR experiences with direct 3D interaction on a desk and

9ARCore Depth Lab - Depth API Samples for Unity: https://
github.com/googlesamples/arcore-depth-lab

10Kinect: https://en.wikipedia.org/wiki/Kinect
11LeapMotion: https://leapmotion.com

https://www.pokemongo.com
https://www.snapchat.com
https://www.ikea.com/us/en/customer-service/mobile-apps
https://www.ikea.com/us/en/customer-service/mobile-apps
https://developers.google.com/ar
https://developer.apple.com/documentation/arkit
https://microsoft.com/hololens
https://microsoft.com/hololens
https://developers.googleblog.com/2020/06/a-new-wave-of-ar-realism-with-arcore-depth-api.html
https://developers.googleblog.com/2020/06/a-new-wave-of-ar-realism-with-arcore-depth-api.html
https://github.com/googlesamples/arcore-depth-lab
https://github.com/googlesamples/arcore-depth-lab
https://en.wikipedia.org/wiki/Kinect
https://leapmotion.com

ARCore

Depth
API

DepthLab Mobile AR

 developers

...
...

Figure 2. A high-level overview of DepthLab. We process the raw depth map from ARCore Depth API and provide customizable and self-contained

components such as a 3D cursor, geometry-aware collision, and screen-space relighting. The DepthLab library aims to accelerate mobile app developers

to build more photo-realistic and interactive AR applications.

Illumiroom [24] demonstrates room-scale AR effects, such as
snow and bouncing physics objects with depth and projection.
Along this line of research, RoomAlive Toolkit for Unity[23]
enables developers to leverage real-time depth sensing capa-
bilities with multiple Kinect sensors in projection mapping
experiences. Mixed Reality Toolkit12 provides a set of com-
ponents and features that leverage active depth sensors and
semantic understanding of the environment, including spatial
mesh reconstruction and hand tracking.

Our work differentiates from the prior art in scope. We explore
a different interaction modality on a piece of widely-available
commodity hardware (Android phones with a single color cam-
era). We demonstrate a general development pattern enabling
the direct use of depth data to merge the real and virtual envi-
ronments. We further demonstrate concrete implementations
of popular features, such as relighting, 3D-anchored aperture
effect, and environmental re-texturing and offer open-source
modules for designers and developers to use.

AR for Head-Mounted Displays

Today, commercial AR head-mounted displays (HMDs) such
as HoloLens and MagicLeap use dedicated depth sensors to
track hands and to continuously reconstruct real-world sur-
faces. However, these systems take time to scan the environ-
ment and to create a mesh reconstruction before interaction
and rendering can happen.

In contrast, our system does not depend on dedicated depth
sensors and can instantly run using the input depth maps. With
live depth maps provided by ARCore Depth API [46], we
are the first to demonstrate a number of geometry-aware AR
interaction and visual effect features on smartphones without
surface reconstruction to the best of our knowledge.

SYSTEM SCOPE AND OVERVIEW

We propose a depth development template, which includes
three different scene representations and ways to access depth
data that enable a broad range of commonly used features
in a 3D scene. We restrict our scope to features that can
run immediately on a variety of devices by focusing on real-
time depth map processing, rather than techniques requiring a
persistent model of the environment generated with 3D surface
reconstruction. Next, we describe our design process and
system architecture.

12Mixed Reality Toolkit: https://github.com/microsoft/

MixedRealityToolkit-Unity

Geometry-Aware AR Features Elicitation

We conducted a sequence of three brainstorming sessions with
a total of 18 participants including researchers, engineers, and
UX designers who have worked on AR or VR-related projects
to elicit a wide range of geometry-aware AR features. We
outline our brainstorming framework and summarize our ideas
to inspire future researchers to build upon our approach.

The first brainstorming session focused on collecting all depth-
map related ideas in one hour. We separated all participants in
two groups (one focusing more on using passive depth data,
and the other focusing more on future use cases with persis-
tent or dynamic voxels) to add more structure. The main ideas
can be grouped into the following three categories: geometry-
aware rendering and actions; depth interaction interfaces and
gestures; and visual effects of static and dynamic scenes (Fig-
ure 3).

Geometry-aware
...

Rendering

Actions

occlusion
shadows
relighting

texture decal

physics
path planning

collision detection
free-space check

Depth Interaction
...

Interface

Gestures

3D cursor
bounding-box
2D selection

3D segmentation

static hand
dynamic motion

body pose
3D touch

Visual Effects of
...

Depth-based Interaction Design Space

Static

Dynamic

aperture effect
triplanar mapping

style transfer
color pop-out

depth transition
light painting

flooding water
surface ripples

...

...

Figure 3. Classification of high-level depth component ideas from the

brainstorm sessions. Please refer to the supplementary material for
more items.

Each participant generated individual ideas in a 30-minute
session. These ideas were then collected in a shared document
and briefly presented to the group by each participant. We
collected a total of 120 ideas this way. After this, the session
organizer clustered similar ideas, initiated an offline voting
and then summarized the ideas with the most votes.

In the second session, we assigned key attributes, discussed
and ranked the technical feasibility, compelling use cases, rel-

https://github.com/microsoft/MixedRealityToolkit-Unity
https://github.com/microsoft/MixedRealityToolkit-Unity

Camera Image

focal length
intrinsic matrix
extrinsic matrix

projection matrix

Camera Parameters

DepthLab
Data Structures aĬd Utilities

screen uv/xy ᆹ depth
screen uv/xy ᆺ world vertex
screen uv/xy ᆹ local normal
screen uv/xy ᆹ world normal

depth uv ᆺ depth xy
screen uv ᆺ screen xy

Conversion UtilitiesPhone Orientation

Depth Map

Depth Array

Depth Mesh

Depth Texture

Localized Depth

orientation hit test reflection

texture decalphysics depth mesh

relighting occlusion aperture

DepthLab
Algorithīs

Surface Depth

Dense Depth

IĬput

Figure 4. System architecture of DepthLab. Our input consists of the RGB camera image, depth map from ARCore Depth API, camera parameters,

and phone orientation. For each frame, we update the depth array (CPU), depth mesh (CPU+GPU), and depth texture (GPU) from the raw depth buffer.

We offer a set of conversion utilities to improve the workflow of developers and a set of algorithms that can be drag & dropped into their applications.

evance of depth, whether any form of machine learning (ML)
models are required, and type of depth data as a minimum
requirement for each idea. Based on the depth requirement, we
scoped DepthLab to cover localized depth, surface depth, and
dense depth, rather than surface reconstruction with voxels or
triangles. We further explain this categorization in Table 1.

In the final session, we discussed the top priorities based on
the overall rating of the ideas, organized weekly meetings,
and assigned tasks to collaboratively develop DepthLab in a
six-month period. We summarize 39 aggregated ideas in the
supplementary material and indicate which ones DepthLab
implements without 3D surface reconstruction.

System Architecture

DepthLab consists of four main components (Figure 4): track-
ing and input, data structure generation, conversion utilities,
and algorithms for the presented effects.

Tracking and Input

DepthLab uses real-time depth maps provided by ARCore
Depth API, which only requires a single moving RGB camera
on the phone to estimate depth. A dedicated depth camera,
such as time-of-flight (ToF) cameras can instantly provide
depth maps without any initializing camera motion. Addi-
tionally, DepthLab uses the live camera feed, phone position
and orientation, and camera parameters including focal length,
intrinsic matrix, extrinsic matrix, and projection matrix for
each frame to establish a mapping between the physical world
and virtual objects. We provide extensive conversion utilities

and interaction modules to facilitate higher-level mobile AR
development.

Data Structures of DepthLab

The depth data is typically stored in a low-resolution depth
buffer (160×120 in our examples13), which is a perspective
camera image that contains a depth value instead of color in
each pixel. For different purposes, we generate three cate-
gories of data structures:

1. Depth array stores depth in a 2D array of a landscape im-
age with 16-bit integers on the CPU. With phone orientation
and maximum sensing range (8 meters in our case), we offer
conversion functions to access depth from any screen point
or texture coordinates of the camera image.

2. Depth mesh is a real-time triangulated mesh generated
for each depth map on both CPU and GPU. In contrast
to traditional surface reconstruction with persistent voxels
or triangles, depth mesh has little memory and compute
overhead and can be generated in real time. We detail its
generation procedure in Algorithm 2.

3. Depth texture is copied to the GPU from the depth array for
per-pixel depth use cases in each frame. We filter the depth
texture with depth-guided anti-aliasing methods (Figure 11)
in additional to hardware-accelerated bilinear filtering to
reduce visual artifacts.

13The depth map resolution may be different depending on different
phone models.

Conversion Utilities and Algorithm

The slow adoption of depth on mobile device applications may
lie in the complexity to process depth for end-user experiences.
Depth data becomes more useful when it is mapped to the
camera image and the real-world geometry. However, even
these steps require technical knowledge outside the domain
of many application developers. Additional factors that can
complicate depth processing include adapting to the change
of the phone orientation, conversion of points between local
and global coordinate frames, and the lack of examples. Our
conversion utilities are detailed in the next section. Based
on the three classes of depth data structures, we provide a
series of algorithms and techniques for developers to directly
apply high-level concepts such as physics, shadows, texture
mapping, relighting in their applications using popular game
editors, such as Unity or Unreal. We detail these techniques in
the next section.

ALGORITHMS AND IMPLEMENTATION

DepthLab enables users to interact with a seamless blend of
the physical environment and virtual renderings. To achieve
this, we architect and implement a set of real-time algorithms
and reusable components for mobile AR developers. Based
on the data structures, we classify our DepthLab components
into three categories: localized depth, surface depth, and dense
depth. We provide an overview of their key traits in Table 1
and explain each term as follows:

Localized Depth Surface Depth Dense Depth

CPU ✓ ✓ ✗ (non-real-time)

GPU N/A ✓ (compute shader) ✓ (fragment shader)

Prerequisite
point projection depth mesh anti-aliasing

normal estimation triplanar mapping multi-pass rendering

Data
Structure depth array depth mesh depth texture

Example
Use Cases

physical measure collision & physics scene relighting

oriented 3D cursor virtual shadows aperture effects

path planning texture decals occluded objects

Table 1. Comparison of CPU/GPU real-time performance, key prereq-

uisite techniques, underlying data structures, and example use cases be-

tween localized depth, surface depth, dense depth.

1. Localized depth uses the depth array to operate on a small
number of points directly on the CPU. It is useful for com-
puting physical measurements, estimating normal vectors,
and automatically navigating virtual avatars for AR games.

2. Surface depth leverages the CPU or compute shaders on
the GPU to create and update depth meshes in real time, thus
enabling collision, physics, texture decal, geometry-aware
shadows, etc.

3. Dense depth is copied to a GPU texture and is used for ren-
dering depth-aware effects with GPU-accelerated bilinear
filtering in screen space. Every pixel in the color cam-
era image has a depth value mapped to it, which is useful
for real-time computational photography tasks, such as re-
lighting, 3D-anchored focus and aperture, and screen-space
occlusion effects.

Interaction With Localized Depth

In comparison to DepthLab, widely-used AR frameworks,
such as ARCore, ARKit, and AR Toolkit [25] provide hit test-
ing functions that allow applications to get a real-world point
based on the intersection between a camera ray and detected
AR planes. Unfortunately, this method often yields errors
due to inaccurate measurements around edges and non-planar
objects on surfaces [31]. In this section, we introduce fun-
damental techniques and interactive use cases with localized
depth (Figure 5), which yield more accurate hit tests and en-
able finer-grained use cases than plane-based or anchor-based
AR interaction.

(a) measurement (b) rain particles (c) collision checking

Figure 5. Example use cases of localized depth. (a) shows a 3D cursor

oriented according to the normal vector of the physical surface and de-

tails about its distance to the ground and to the camera. (b) shows a rain

particles demo where each rain drop tests for a hit with the physical en-

vironment and renders a ripple upon a collision. (c) shows a collision

checking example where a virtual chair is occluded by a physical wall.

Screen-space to/from World-space Conversion

Given a screen point p = [x,y], we look up its depth value in
the depth array Dw×h (in our case: w = 120, h = 160), then
re-project it to a camera-space vertex vp using the camera
intrinsic matrix K [15]:

vp = D(p) ·K−1 [p,1] (1)

Given the camera extrinsic matrix C = [R|t], which consists
of a 3× 3 rotation matrix R and a 3× 1 translation vector t,
we derive the global coordinates gp in the world space:

gp = C · [vp,1] (2)

Hence, we have both virtual objects and the physical environ-
ment in the same coordinate system. Hit tests can be directly
performed with ray casting from the camera location (transla-
tion) t to the screen point p, then to a vertex gp in the world
space.

The reverse process is simpler. We first project 3D points with
the camera’s projection matrix P, then normalize the projected
depth values and scale the depth projection to the size of the
depth map w×h:

p̂ = P · [gp,1],

p =

[

w ·
p̂x + p̂w

2p̂w

,h ·
p̂y + p̂w

2p̂w

]

(3)

Through close communication with partner developers, we
identified that adapting the depth processing steps to dynami-
cally changing screen orientation and resolution is complicated
and time consuming. We simplified these steps and provide
convenient conversion utilities, which ensure that every pixel
on the screen has a corresponding world vertex measured in
meters.

Computing Normal Vectors

Computing usable normal maps out of low-resolution and
coarse depth maps can be challenging. With reliable depth val-
ues we could compute a normal vector n with the cross product
of vectors formed by adjacent depth values re-projected to 3D
vertices. [22]:

np =
(

vp−vp+(1,0)

)

×
(

vp−vp+(0,1)

)

(4)

However, such methods may yield noisy or invalid results due
to depth discontinuities, holes, and outliers in the estimated
scene depth, as shown in Figure 6(b). We provide two real-
time algorithms to compute a more stable normal map in real
time, on both CPU and GPU (fragment shader). Both compo-
nents estimate the average normal from 4-ring neighborhoods
and cull outliers:

Algorithm 1: Estimation of the Normal Vector of a Screen
Point in DepthLab.

Input : A screen point p← (x,y) and focal length f .
Output : The estimated normal vector n.

1 Set the sample radius: r← 2 pixels.
2 Initialize the counts along two axes: cX ← 0,cY ← 0.
3 Initialize the correlation along two axes: ρX ← 0,ρY ← 0.
4 for ∆x ∈ [−r,r] do
5 for ∆y ∈ [−r,r] do
6 Continue if ∆x = 0 and ∆y = 0.
7 Set neighbor’s coordinates: q← [x+∆x,y+∆y].
8 Set q’s distance in depth: dpq←‖D(p),D(q)‖.
9 Continue if dpq = 0.

10 if ∆x , 0 then
11 cX ← cX +1.
12 ρX ← ρX +dpq/∆x.

13 end
14 if ∆y , 0 then
15 cY ← cY +1.
16 ρY ← ρY +dpq/∆y.

17 end

18 end

19 end

20 Set pixel size: λ ← D(p)
f

.

21 return the normal vector n:
(

− ρY

λcY
,− ρX

λcX
,−1

)

.

Collision-aware Placement

Collisions can be computed with both localized depth and
surface depth. Localized depth allows developers to project a
world-space vertex to the depth map to check for a collision.
On the other hand, surface depth enables features beyond
simple collision checking, such as physics simulations and

(a) reference color (b) input depth (c) eq. 4 result (d) our result

Figure 6. Comparison of the output normal maps between (c) computed

by Equation 4 and our result (d) yielded by Algorithm 1. (a) shows the

reference color image and (b) shows the input depth map computed from

(a) with [46].

shadows. For simple tasks, such as placing a virtual object,
we recommend using localized depth for better performance.

We use a majority voting approach to check for collision given
a noisy depth map. For example, with the collision mesh (e.g.,
a simplified mesh such as a bounding box or a capsule) of the
virtual object, we can transform the eight corner points into
screen space, then test whether its depth value is larger than
the physical environment’s depth value. If the majority of the
corner points are visible, the user may safely place the virtual
object in the environment, as shown in Figure 5(c) and the
supplementary video for a live demo.

Avatar Path Planning

Figure 7. With localized depth, DepthLab can automatically plan a 3D

path for the avatar that avoids a collision with the statue by making the

avatar hover over the statue.

AR applications without access to a dense depth map rely
on gravity-aligned AR planes to digitally represent the real-
world environment. Since these planes only coarsely represent
flat horizontal or vertical surfaces, existing AR applications
show most virtual character simply moving along a flat ground
plane, even when the real world has uneven terrain, or with
user’s guidance [56]. With localized depth, we can allow AR
characters to respect the geometry of physical environments as
shown in Figure 7 and in the supplementary video. First, the
character is moved parallel to the ground plane. Then the final
position of the character is calculated by casting a ray starting
at the top of the character down along the gravity vector. At
each ray-casting step, the ray’s current position is projected
to the depth map. If the projected point has greater depth
value than that of the depth map, a physical surface has been
intersected with the virtual avatar. If so, we set the intersection
point as the new character position to avoid the obstacle along
the way. We apply the C1 filter [4] to reduce avatar jitters.

Other Use Cases

Localized depth can also enable many interesting visual ef-
fects, such as virtual ray reflections and rain drops hitting
arbitrary surfaces. Given a starting vertex in the world space,
a direction, and a marching speed, we can estimate when and
where a ray will hit a physical surface. We can also compute a
ray’s new reflected direction based on the surface normal at the
collision point. We showcase an example of rain particles in
Figure 5(b) and ray reflection in the supplementary material.

Interaction With Surface Depth

(a) physics simulation (b) texture decal (c) mesh freezing

Figure 8. Example use cases of surface depth. (a) shows an AR physics

playground, which allows users to throw bouncy virtual objects into the

physical scene. (b) shows color balloons thrown on physical surfaces.

The balloons explode and wrap around surfaces upon contact with any

physical object, such as the corner of a table. (c) shows a material wrap-

ping demo that covers arbitrary shapes with various virtual materials.

Most graphics and game engines are optimized to process
mesh data composed of interconnected triangles. Features,
such as shadow mapping and physics collision rely on the
surface information to compute occlusions and intersections
from the perspective of a light source or a rigid body physics
object.

AR systems, such as HoloLens or Magic Leap use a time-of-
flight depth sensor and a surface reconstruction component
to create a persistent volumetric model of the physical envi-
ronment. Applications receive a mesh-presentation of this
volumetric model to compute shadows or physics simulations.
Although a persistent volumetric model of the environment
offers many benefits, it requires some time for the environment
model to build up and become stable. Furthermore, surface
reconstruction systems often have high memory requirements
and/or high compute.

In our work, we forego surface reconstruction and directly
represent environment depth measurements as meshes.

Many phones allow AR content to be rendered on planes
and tracked key points anchored in the physical environment.
However, the virtual 3D content often looks just pasted on the
screen and doesn’t show strong visual or behavioral interac-
tions with the real world, i.e. virtual objects don’t get occluded
by real objects and don’t collide with real surfaces.

A number of phones have a dedicated time-of-flight (ToF)
depth sensor, stereo cameras, or a software algorithm that
estimates depth from images of a monocular camera, which

can add a detailed understanding of the environment geometry
to the AR experience.

(a) input depth map

(b) template mesh

(c) real-time depth mesh

winding order of the template mesh

Figure 9. Overview of depth mesh generation. (a) shows an example of

input depth map in which brighter pixels indicate farther regions. (b)

shows the tessellated template mesh with its vertices arranged in a regu-

lar grid and displaced by re-projecting corresponding depth values read-

ily available in the shader. (c) shows the resulting depth mesh consisting

of interconnected triangle surfaces.

Real-time Depth Mesh

More sophisticated features, such as shadow calculation and
physics collision often use a mesh representation of 3D shapes
instead. A mesh is a set of triangle surfaces that are connected
to form a continuous surface, which is the most common
representation of a 3D shape.

Game and graphics engines are optimized for handling mesh
data and provide simple ways to transform, shade, and to detect
interactions between shapes. The connectivity of vertices
and the surfaces these 3D points form are especially useful
when geometric computations are not performed along the
projection ray, such as shadow mapping and physics collisions.

We use a variant of a screen-space depth meshing technique
described in [18]. This technique relies on a densely tessellated
quad (see Figure 9 and Algorithm 2) in which each vertex is
displaced based on the re-projected depth value. No additional
data transfer between CPU and GPU is required during render
time, making this method very efficient.

Tri-planar texture mapping

The appearance of real-world surfaces can be digitally altered
with depth meshes.

By computing world coordinates for the depth mesh in a com-
pute shader, we provide customizable assets to apply triplanar
texture mapping to the physical world. In this demonstration,
users can touch on the screen to change the look of physical
surfaces into gold, silver, or a grid pattern (Figure 8).

The depth mesh provides the 3D vertex position and the normal
vector of surface points to compute world-space UV texture
coordinates. In the simplest case, axis-aligned UV coordinates
can be derived from the 3D vertex position. However, these
often create stretching artifacts on planar surfaces. Tri-planar
UV mapping [13] is a simple technique that yields compelling

Algorithm 2: Real-time Depth Mesh Generation.

Input : Depth map D, its dimension w×h, and depth
discontinuity threshold ∆dmax = 0.5.

Output : Lists of mesh vertices V and indices I.
In the initialization stage on the CPU:

1 for x ∈ [0,w−1] do
2 for y ∈ [0,h−1] do
3 Set the pivot index: I0← y ·w+ x.
4 Set the neighboring indices:

I1← I0 +1, I2← I0 +w, I3← I2 +1.
5 Add a temporary vertex (x/w,y/h,0) to V.

6 end

7 end
In the rendering stage on the CPU or GPU:

8 for each vertex v ∈ V do
9 Look up v’s corresponding screen point p.

10 Fetch v’s depth value d0← D(p).
11 Fetch v’s neighborhoods’ depth values:

d1← D(p+(1,0)), d2← D(p+(0,1)),
d3← D(p+(1,1)).

12 Compute average depth d̄← d0+d1+d2+d3
4

.

13 Let d← [d0,d1,d2,d3].

14 if any
(

step
(

∆dmax,
∣

∣d− d̄
∣

∣

))

= 1 then
15 Discard v due to large depth discontinuity.
16 end
17 else
18 Convert v to the world space via Equation 1.
19 end

20 end

real-time results by blending three orthogonally projected tex-
tures based on the contributions of each axis of the normal
vector.

Grid, dot, or any artificial or natural repeating pattern can be
used to texture real world surfaces. An urban landscape can
be textured to look as if it is overgrown with plants.

Virtual Shadows

Shadows provide a strong depth cue and are essential for
increasing the realism of AR experiences. Conventional
mobile experiences without access to depth often render flat
virtual shadows using AR planes on the real world, which
leads to very noticeable artifacts on non-planar objects.

Real objects need to be represented as meshes to solve this
issue, so that they can be treated as part of the virtual scene.
With surface depth, we render a depth map of the physical
scene represented as a screen-space mesh from the perspective
of the light source following [49]. Any scene point that has a
greater depth value than that of the light source’s depth map
is considered to be in the dark and shaded accordingly. This
allows the real scene geometry to be rendered from arbitrary
viewpoints and allows real and virtual objects to cast shadows
on each other.

In a 3D AR scene, the real-world environment is often ren-
dered as a quad texture behind all other scene objects. We

modify the rendering parameters of the screen-space mesh to
overlay shadows on the AR background, and to only receive
shadows on an otherwise transparent mesh and optionally also
cast shadows on virtual objects.

Physics Collisions

Physics simulations are an essential part of many interactive
experiences and games and are often part of the game mecha-
nism. In AR, collisions between real and virtual objects can
further add realism to the entire experience. In the simplest
case, physics collisions prevent virtual objects from penetrat-
ing real objects. In a more advanced scenario, virtual objects
would bounce off of real surfaces in a way we would expect it
from real objects.

Depth maps do not represent surfaces, but rather point samples
of distances, and are not suitable for calculating force vectors
and collision normals from arbitrary directions. Unity’s
physics engine, like many others, supports converting meshes
to mesh colliders, which are optimized spatial search structures
for physics queries that allow virtual rigid-body objects to hit
and bounce off of real surfaces.

The creation of a mesh collider (mesh cooking) happens at a
lower resolution on the CPU in real time. However, we only
perform it when the user throws a new dynamic object into
the AR scene instead of at every frame. This operation is
computationally expensive and not continuously needed as the
physical environment is mostly static.

Decals and Splats

A sub-region of the depth mesh can be used to create more
localized effects, such as decals, virtual graffiti, splat effects,
and more on real surfaces. Please refer to the supplementary
material and video for examples.

Interaction with Dense Depth

(a) relighting effect (b) aperture effect (c) fog effect

Figure 10. Example use cases of dense depth. (a) shows animating vir-

tual light sources illuminating the carpet and spherical chairs. (b) shows

a photography app where a user can anchor the focus in 3D space and

the background is adaptively blurred out according to the distance to

the focal point. (c) shows a fog effect example where faraway objects are

more difficult to see.

Due to the compute constraints on mobile AR, we recommend
interactions with dense depth to be implemented on the GPU
with compute or fragment shaders. Using this dense depth

to supplement the z-buffer allows many screen-space compu-
tational photography techniques to be seamlessly applied to
both real and virtual scenes.

Anti-aliasing

(a) input depth map
(bilinearly filtered)

(b) result depth map
with FXAA

(c) result with
depth-guided FXAA

Figure 11. Comparison between the bilinearly upsampled depth

map, post-processed depth map with FXAA, and our result with depth-

guided FXAA. Although traditional FXAA smoothes the close (red)

depth around curvature, it fails to straighten the lines in the far (blue)

regions. With depth-guided antialising, we can adaptively smooth the

edges in both near and far regions. The input color image with an egg-

shaped chair can be referenced from the first image shown in Figure 2.

Since the raw depth map has a much lower resolution (e.g.,
160× 120) compared to the phone screen resolution (e.g.,
3040× 1040 in Pixel 4) and bilinear upsampling may yield
pixelation artifacts, we provide a variation of the fast approxi-
mate anti-aliasing (FXAA) algorithm [29] with depth guidance.
For each pixel on the screen, denote d as its corresponding nor-
malized depth value ranging from 0 to 1. Considering that the
closer depth pixels are typically larger, we employ an adaptive
kernel size to filter the depth map D with FXAA:

σ = smin +S2(1−d) · (smax− smin),d ∈ D (5)

where S2(x) = 6x5− 15x4 + 10x3, i.e., the fast smoothstep
function introduced in [9]. We empirically determined smin =
2,smax = 3 pixels as a good value. We show a comparison
before and after anti-aliasing the low-resolution depth map on
a per-pixel basis in Figure 11.

Relighting

Figure 12. Given a dense depth texture, a camera image, and virtual

light sources, we altered the lighting of the physical environment by trac-

ing occlusions along the light rays in real time.

We implemented a per-pixel relighting algorithm that uses low-
resolution depth maps, which is based on ray marching and

a relighting model introduced in Equation 8 of [6]. Methods
based on BRDFs (Bidirectional Reflectance Distribution Func-
tions), such as Phong or Lambertian models [34] require a
normal map, which can contain artifacts around object bound-
aries in low-texture regions as shown in Figure 6(d). Instead,
we chose ray marching [10] to compute occlusion-aware re-
lighting without normals. For each pixel on the screen, we
evaluate the overall intensity by marching rays from the light
source to the corresponding vertex in the world coordinate
system, which naturally yields shadows for occluded areas.

ARCore Depth API provides live depth maps to make AR
experiences geometry aware. Applications, such as Google’s
SceneViewer, Search, and a number of shopping apps allow
users to preview furniture and other objects in their own space.
We aim to improve the realism of such experiences beyond
world-aware placement to help users answer questions such
as: What will be the effect of the lamp & lighting in my room?
Can I try out different light colors and configurations? Can
I view my room and objects in a different simulated daytime
lighting?

In order to dynamically illuminate the physical scene with
virtual light sources, we need to compute the photon intensity
at the points the rays intersect with physical surfaces.

Algorithm 3: Ray-marching-based Real-time Relighting.

Input : Depth map D, the camera image I, camera intrinsic
matrix K, L light sources L= {L i, i ∈ L} with each
light’s location vL and intensity in RGB channels
φL .

Output :Relighted image O.
1 for each image pixel p ∈ depth map D in parallel do
2 Sample p’s depth value d← D(p).
3 Compute the corresponding 3D vertex vp of the screen

point p using the camera intrinsic matrix vp with K:

vp = D(p) ·K−1 [p,1]
4 Initialize relighting coefficients of vp in RGB: φp← 0.
5 for each light L ∈ light sources L do
6 Set the current photon coordinates vo← vp.
7 Set the current photon energy Eo← 1.
8 while vo , vL do
9 Compute the weighted distance between the

photon to the physical environment
∆d← α|vxy

o −v
xy

L
|+(1−α)|vz

o−vz
L
|, α = 0.5.

10 Decay the photon energy: Eo← 95%Eo

11 Accumulate the relighting coefficients:
φp← φp +∆dEoφL .

12 March the photon towards the light source:
vo← vo +(vL −vo)/S, here S = 10, depending
on the mobile computing budget.

13 end

14 end
15 Sample pixel’s original color: Φp← I(p).
16 Apply relighting effect:

O(p)← γ · |0.5−φp| ·Φ
1.5−φp
p −Φp, here γ ← 3.

17 end

There are a number of challenges to enable relighting with
live depth maps: High-quality normal maps are not available.
One could compute the intensity with the Lambertian model
by using the dot product between the normal vector and the
lighting direction. However, in our case this method is not
preferred since the normal map computed from the depth
map can suffer from many artifacts including empty regions
around object boundaries and over-exposed areas. The lighting
condition of the physical environment is complex, and we do
not know the intrinsic albedo of the materials in the physical
world.

3D-anchored Aperture Effect

Figure 13. Wide-aperture effect focused on a world-anchored point on a

flower from different perspectives. Unlike traditional photography soft-

ware, which only anchors the focal plane to a screen point, DepthLab
allows users to anchor the focal point to a physical object and keep the

object in focus from even when the viewpoint changes. Please zoom in to

compare the focus and out-of-focus regions.

Algorithm 4: 3D-anchored Focus and Aperture Effect.

Input : Depth map D, the camera image I, anchored 3D
focal point f, and user-defined aperture value γ .

Output :Post-processed image O with aperture effects.
1 Compute the maximum dmax and minimum dmin of D.
2 For f, compute its corresponding screen-space point pf.
3 Fetch the depth of the focal point f: df← D(pf).

4 Compute its normalized depth d̂f =
df−dmin

dmax−dmin
.

5 for each image pixel p ∈ depth map D in parallel do
6 Sample p’s depth value dp← D(p).

7 Compute its normalized depth: d̂p←
dp−dmin

dmax−dmin
.

8 Compute its distance to f: ∆d← |d̂p− d̂f|.
9 Compute the “aperture size”:

σ ← step(0,∆d−α) · (1− cos(β (∆d−α))), here
α ← 0.1,β ← 3.

10 Compute the kernel size of the Gaussian filter:
σ ← γ0 +σ · γ , here γ0← 0.1.

11 Apply a two-pass Gaussian filter with N-ring
neighborhood in O(N) on the GPU, here N = 5.

12 end

Depth maps allow us to simulate the style of a DSLR cam-
era’s wide-aperture picture with a small mobile phone camera.
Unlike DSLR cameras or mobile camera apps, which set a
focal plane at a certain distance or lock the focus on a 2D
region-of-interest (e.g. face), we can anchor the focus point
on a physical object and apply Gaussian blur with an adaptive
kernel to simulate the Bokeh effects.

Given the user’s touch position p, we first compute a 3D vertex
gp to anchor the focus point. While the user moves the phone,
we recompute the distance between the camera and gp to set a
new focal plane for the wide-aperture effect. We convert the
3D anchor to the view space, normalize the depth values the
with local minimum and maximum values to emphasize the
objects that are in focus. Finally, we apply Gaussian blur and
render the wide-aperture effect on the 2.5D RGBD data.

Occlusion

Occlusion effects are achieved in a per-pixel manner. Each
pixel of the virtual object is tested whether it is located behind
surfaces of the physical environment or not using the GPU
smoothed depth map as introduced in [20, 46]. Note that to
reduce the blending artifacts, we perform a soft blur in depth
boundary regions as shown in Figure 14(b).

(a) AR object placement without
occlusion effects

(b) AR object placement with
occlusion effects

Figure 14. Before and after the geometry-aware occlusion effects with
dense depth. By applying a single fragment shader in DepthLab, AR de-

velopers can instantly enhance the realism of their own AR experiences.

DISCUSSIONS

In this section, we discuss how our depth library differentiates
from the prior art that uses persistent surface reconstruction.
With DepthLab, we aim to uncover opportunities and chal-
lenges for interaction design, explore technical requirements,
and better comprehend the trade-off between programming
complexity and design flexibility.

Interaction with Depth Maps vs. Reconstructed Meshes

Some of our interactive components such as the oriented reticle
and geometry-aware shadows are available on modern AR
head-mounted displays with reconstructed meshes. However,
depth maps are still often preferred in mobile scenarios. Next
we list the major differences in methods using depth maps or
reconstructed meshes.

• Prerequisite sensors: DepthLab requires only a single
RGB camera and leverages the ARCore Depth API to run.
Systems using reconstructed meshes typically require a
depth sensor (HoloLens, MagicLeap, KinectFusion [22]).
With an additional active depth sensor, such as time-of-
flight sensors (e.g., Samsung Galaxy Note 10+), DepthLab
can offer rendering and interaction at a potentially higher
quality, but this is not a requirement.

• Availability: Depth maps are instantly and always available
for all devices while approaches with reconstructed meshes
predominantly require environmental scanning before be-
coming available; instant meshes usually have holes.

• Physical alignment: Depth maps have almost per-pixel
alignment with the color image while real-time recon-
structed meshes only have coarse alignment with low-
resolution polygons.

• Ease of use: By providing interactive modules in screen
space, DepthLab is more directly accessible to people with-
out advanced graphics or computational geometry back-
ground.

• Example use cases: Both depth maps and reconstructed
meshes enable many interactive components such as ori-
ented reticles, physics simulations, and geometry-aware
shadows. However, each technique has its own advantages.
On the one hand, depth maps can directly enable the wide-
aperture effect and lighting effects, while real-time recon-
structed meshes usually suffer from artifacts when doing
so. On the other hand, depth maps are not volumetric and
require advanced post-processing steps to enable 3D object
scanning or telepresence scenarios.

Performance Evaluation

To evaluate the performance of key DepthLab components that
use surface depth and per-pixel depth, and to gently introduce
developers to the capabilities of our library, we made a mini-
mum viable application with a point depth example (oriented
reticle), a surface depth example (depth mesh generator), and a
per-pixel depth example (visualization of depth map) in Unity
2019.2.

Procedure Timings (ms)

DepthLab's overall processing and rendering in Unity 8.32

DepthLab's data structure update and GPU uploading 1.63
Point Depth: normal estimation algorithm < 0.01

Surface Depth: depth mesh update algorithm 2.41
Per-pixel Depth: visualization with single texture fetch 0.32

Table 2. Profiling analysis for a minimum DepthLab example applica-

tion with a point depth example (oriented reticle), a surface depth exam-

ple (depth mesh generation), and a per-pixel depth example (visualiza-

tion of depth map).

We ran the experiments with a handheld Android Phone re-
leased in 2018 (Pixel 3). The application also records the
average rendering time per frame in a sliding window of 500
frames to prevent outliers. We ran the experiments in five
different locations of a typical household and reported the
average profiling results of timings in Table 2. The average
CPU consumption is 13% and the memory usage is 223.3 MB.

In the second test, we evaluated the performance of the real-
time relighting. We set the number of sampled photons to 2, 4,
8, 16, 32, 64, and 128 respectively and ran the experiment in
each setting for five rounds in different locations. We report
the mean and standard deviation in Table 2 (b) and suggest a
sampling rate of 4-8 photons per ray for real-time deployment
on a Pixel 3 phone. To better understand the effects of our
samples in Algorithm 3, we offer a comparison between 8
samples and 128 samples with a pair of input from Middlebury
Stereo Datasets [37]. Based on the results shown in Figure 15,
we recommend a sampling rate of 8 photons or less per ray for
real-time performance on a Pixel 3 or comparable phones. For

2 4 8 16 32 64 128
0

50

100

150

200

Number of samples per ray

R
e
n

d
e
ri

n
g

 t
im

e
 p

e
r

fr
a
m

e
 (

m
s
)

(a) relighting examples

input color output with #samples=8

output with #samples=128input depth

(b) performance benchmark

Figure 15. Examples and performance evaluation of real-time relighting.

(a) shows a pair of input color and depth images and the correspond-

ing results with 8 and 128 samples per ray in Algorithm 3. (b) shows a

performance evaluation with real-time camera images on a Pixel 3. Ac-

cording to the results, we recommend 4-8 samples per ray to deploy our

relighting module on Pixel 3 or comparable mobile devices.

computational photography applications, AR developers may
leverage a small sampling rate for live preview and a large
number for final processing.

(a) examples of aperture effects

input color output with kernel size=21

output with kernel size=71input depth

(b) performance benchmark

3 11 21 31 41 51 61 71
0

50

100

150

200

Kernel size

R
e
n

d
e
ri

n
g

 t
im

e
 p

e
r

fr
a
m

e
 (

m
s
)

Figure 16. Examples and performance evaluation of real-time aperture

effects. (a) shows a pair of input color and depth images and the corre-

sponding results with Gaussian kernel sizes of 21 and 71 in Algorithm 3.

(b) shows a performance evaluation with real-time camera images on a

Pixel 3. According to the results, we recommend a kernel size of 11-21

to deploy our real-time wide-aperture effect on Pixel 3 or comparable

mobile devices.

In the third test, we evaluated the performance of the wide-
aperture effect. Similar to relighting, we ran 5 rounds of
experiments across 8 kernel sizes: 3, 11, 21, 31, 41, 51, 61,
71. The kernel sizes are selected with odd numbers so that the
receptive field is always centered at the pixel to be rendered.
With larger sizes of the Gaussian kernel, the out-of-focus re-
gions become more blurry but the performance downgrades
significantly. Based on the results shown in Figure 16, we
recommend a kernel size of 21 or smaller for real-time perfor-
mance on a Pixel 3 or comparable phones.

DepthLab as a Reusable Library for Depth Rendering and

Interaction

After solving many technical challenges for interacting with
real-time depth on a mobile phone, we shared DepthLab with
selected partners. In the supplementary video, we show a
sped-up video of an external AR developer demonstrating how
DepthLab components can accelerate mobile AR development
process with Unity prefabs and reusable scripts into their AR
games.

LIMITATIONS

While we present a self-contained library for rendering and
interaction in mobile augmented reality, our work does have
limitations.

DepthLab is designed to enable geometry-aware AR expe-
riences on phones with and without time-of-flight sensors,
hence we have yet to explore more in the design space of
dynamic depth. With time-of-flight sensors available on many
commercial smartphones, we would like to extend DepthLab
with motion sensing, gesture recognition, and pose estimation.

We envision live depth to be available on many IoT devices
with cameras or depth sensors in the future. Each pixel in a
depth map could be associated with a semantic label and help
computers better understand the world around us and make
the world more accessible for us.

CONCLUSION AND FUTURE WORK

In this paper, we present DepthLab, an interactive depth li-
brary that aims to empower mobile AR designers and devel-
opers to more realistically interact with the physical world
using virtual content. Our primary contribution is the open-
sourced, reusable, real-time, depth-based Unity library Depth-
Lab, which enables novel AR experiences with increased real-
ism and geometry-aware features.

We described our interaction modules and real-time algorithms
building upon three data structure representations of depth: lo-
calized depth, surface depth, and dense depth. On commodity
mobile phones with a single RGB camera, DepthLab can fuse
virtual objects into the physical world with geometry-aware
shadows and occlusion effects, simulate collision and paint
splatting, and add virtual lighting into the real world.

We open sourced the DepthLab library on Github (https:
//github.com/googlesamples/arcore-depth-lab) to facilitate fu-
ture research and development in depth-aware mobile AR ex-
periences. We believe that this library will allow researchers,
developers, and enthusiasts to leverage the base interactions to
build novel, realistic AR experiences on regular smartphones.
With the general space of perception in AR growing as an
active field, we believe there are a number of possibilities
that span persistent geometric reconstructions, novel human
computer interaction, and semantic scene understanding that
will add to making AR experiences more delightful on modern
phones or head-mounted displays.

ACKNOWLEDGEMENT

We would like to extend our thanks to Barak Moshe and Wendy
Yang for providing a number of visual assets and UX guidance
for our open-source code, and to Sean Fanello and Danhang
Tang for providing initial feedback for the manuscript. We
would also like to thank our UIST reviewers for their insightful
feedback.

REFERENCES

[1] Jake K Aggarwal and Lu Xia. 2014. Human Activity
Recognition From 3D Data: A Review. Pattern
Recognition Letters 48 (2014), 70–80. DOI:
http://dx.doi.org/10.1016/j.patrec.2014.04.011

[2] Ronald Azuma. 1993. Tracking Requirements for
Augmented Reality. Commun. ACM 36, 7 (1993), 50–52.
DOI:http://dx.doi.org/10.1145/159544.159581

[3] Wolfgang Birkfellner, Michael Figl, Klaus Huber, Franz
Watzinger, Felix Wanschitz, Johann Hummel, Rudolf
Hanel, Wolfgang Greimel, Peter Homolka, Rolf Ewers,
and others. 2002. A Head-Mounted Operating Binocular
for Augmented Reality Visualization in
Medicine-Design and Initial Evaluation. IEEE
Transactions on Medical Imaging 21, 8 (2002), 991–997.
DOI:http://dx.doi.org/10.1109/TMI.2002.803099

[4] Géry Casiez, Nicolas Roussel, and Daniel Vogel. 2012.
1e Filter: a Simple Speed-Based Low-Pass Filter for
Noisy Input in Interactive Systems. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2527–2530. DOI:
http://dx.doi.org/10.1145/2207676.2208639

[5] Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian
Friday, and Christos Efstratiou. 2000. Developing a
Context-Aware Electronic Tourist Guide: Some Issues
and Experiences. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI). ACM, 17–24. DOI:
http://dx.doi.org/10.1145/332040.332047

[6] Ruofei Du, Ming Chuang, Wayne Chang, Hugues
Hoppe, and Amitabh Varshney. 2019a. Montage4D:
Real-Time Seamless Fusion and Stylization of
Multiview Video Textures. Journal of Computer
Graphics Techniques 1, 15 (2019), 1–34.
http://jcgt.org/published/0008/01/01

[7] Ruofei Du, David Li, and Amitabh Varshney. 2019b.
Geollery: A Mixed Reality Social Media Platform. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI). ACM, 13. DOI:
http://dx.doi.org/10.1145/3290605.3300915

[8] Ruofei Du, David Li, and Amitabh Varshney. 2019c.
Project Geollery.com: Reconstructing a Live Mirrored
World With Geotagged Social Media. In Proceedings of
the 24th International Conference on Web3D
Technology (Web3D). ACM, 1–9. DOI:
http://dx.doi.org/10.1145/3329714.3338126

[9] David S Ebert, F Kenton Musgrave, Darwyn Peachey,
Ken Perlin, and Steven Worley. 2003. Texturing &
Modeling: A Procedural Approach. Morgan Kaufmann.

[10] Thomas Engelhardt and Carsten Dachsbacher. 2010.
Epipolar Sampling for Shadows and Crepuscular Rays
in Participating Media With Single Scattering. In
Proceedings of the 2010 ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (I3D). ACM,
119–125. DOI:
http://dx.doi.org/10.1145/1730804.1730823

[11] Steven Feiner, Steven Feiner, Blair MacIntyre, Tobias
Hollerer, and Anthony Webster. 1997. A Touring
Machine: Prototyping 3D Mobile Augmented Reality
Systems for Exploring the Urban Environment. Personal

https://github.com/googlesamples/arcore-depth-lab
https://github.com/googlesamples/arcore-depth-lab
http://dx.doi.org/10.1016/j.patrec.2014.04.011
http://dx.doi.org/10.1145/159544.159581
http://dx.doi.org/10.1109/TMI.2002.803099
http://dx.doi.org/10.1145/2207676.2208639
http://dx.doi.org/10.1145/332040.332047
http://jcgt.org/published/0008/01/01
http://dx.doi.org/10.1145/3290605.3300915
http://dx.doi.org/10.1145/3329714.3338126
http://dx.doi.org/10.1145/1730804.1730823

Technologies 1, 4 (1997), 74–81. DOI:
http://dx.doi.org/10.1109/ISWC.1997.629922

[12] Martin A Fischler and Robert C Bolles. 1981. Random
Sample Consensus: A Paradigm for Model Fitting With
Applications to Image Analysis and Automated
Cartography. Commun. ACM 24, 6 (1981), 381–395.
DOI:http://dx.doi.org/10.1145/358669.358692

[13] Ryan Geiss. 2007. Generating Complex Procedural
Terrains Using the GPU. GPU Gems 3 (2007), 7–37.
https://dl.acm.org/doi/book/10.5555/1407436

[14] Chris Greenhalgh, Shahram Izadi, Tom Rodden, and
Steve Benford. 2001. The EQUIP Platform: Bringing
Together Physical and Virtual Worlds. Mixed Reality
Laboratory-University of Nottingham-UK (2001).

[15] Richard Hartley and Andrew Zisserman. 2003. Multiple
View Geometry in Computer Vision. Cambridge
University Press. DOI:
http://dx.doi.org/10.1017/CBO9780511811685

[16] Jeremy Hartmann, Christian Holz, Eyal Ofek, and
Andrew D Wilson. 2019. RealityCheck: Blending
virtual environments with situated physical reality. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 1–12. DOI:
http://dx.doi.org/10.1145/3290605.3300577

[17] Iris Herbst, Anne-Kathrin Braun, Rod McCall, and
Wolfgang Broll. 2008. TimeWarp: Interactive Time
Travel With a Mobile Mixed Reality Game. In the
Proceedings of MobileHCI 2008, Amsterdam,
Netherlands (2008), 235–244. DOI:
http://dx.doi.org/10.1145/1409240.1409266

[18] Otmar Hilliges, David Kim, Shahram Izadi, Malte
Weiss, and Andrew Wilson. 2012. HoloDesk: Direct 3D
Interactions With a Situated See-Through Display. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2421–2430. DOI:
http://dx.doi.org/10.1145/2207676.2208405

[19] Tobias Höllerer, Steven Feiner, Tachio Terauchi, Gus
Rashid, and Drexel Hallaway. 1999. Exploring MARS:
Developing Indoor and Outdoor User Interfaces to a
Mobile Augmented Reality System. Computers &
Graphics 23, 6 (1999), 779–785. DOI:
http://dx.doi.org/10.1016/S0097-8493(99)00103-X

[20] Aleksander Holynski and Johannes Kopf. 2018. Fast
Depth Densification for Occlusion-Aware Augmented
Reality. ACM Transactions on Graphics (TOG) 37, 6
(2018), 1–11. DOI:
http://dx.doi.org/10.1145/3272127.3275083

[21] Shahram Izadi, Mike Fraser, Steve Benford, Martin
Flintham, Chris Greenhalgh, Tom Rodden, and Holger
Schnädelbach. 2002. Citywide: Supporting Interactive
Digital Experiences Across Physical Space. Personal
Ubiquitous Comput 6, 4 (2002), 290–298. DOI:
http://dx.doi.org/10.1007/s007790200030

[22] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew
Davison, and Andrew Fitzgibbon. 2011. KinectFusion:
Real-Time 3D Reconstruction and Interaction Using a
Moving Depth Camera. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’11). ACM, Santa Barbara,
California, USA, 559–568. DOI:
http://dx.doi.org/10.1145/2047196.2047270

[23] Brett Jones, Rajinder Sodhi, Michael Murdock, Ravish
Mehra, Hrvoje Benko, Andrew Wilson, Eyal Ofek, Blair
MacIntyre, Nikunj Raghuvanshi, and Lior Shapira. 2014.
RoomAlive: Magical Experiences Enabled by Scalable,
Adaptive Projector-Camera Units. In Proceedings of the
27th Annual ACM Symposium on User Interface
Software and Technology. 637–644. DOI:
http://dx.doi.org/pdf/10.1145/2642918.2647383

[24] Brett R Jones, Hrvoje Benko, Eyal Ofek, and Andrew D
Wilson. 2013. Illumiroom: Peripheral Projected
Illusions for Interactive Experiences. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 869–878. DOI:
http://dx.doi.org/10.1145/2468356.2479531

[25] Hirokazu Kato and Mark Billinghurst. 1999. Marker
Tracking and HMD Calibration for a Video-Based
Augmented Reality Conferencing System. In
Proceedings 2nd IEEE and ACM International
Workshop on Augmented Reality (IWAR’99). IEEE,
85–94. DOI:
http://dx.doi.org/10.1109/IWAR.1999.803809

[26] David Kim, Otmar Hilliges, Shahram Izadi, Alex D
Butler, Jiawen Chen, Iason Oikonomidis, and Patrick
Olivier. 2012. Digits: Freehand 3d Interactions
Anywhere Using a Wrist-Worn Gloveless Sensor. In
Proceedings of the 25th Annual ACM Symposium on
User Interface Software and Technology. ACM,
167–176. DOI:
http://dx.doi.org/10.1145/2380116.2380139

[27] Minseok Kim and Jae Yeol Lee. 2016. Touch and Hand
Gesture-Based Interactions for Directly Manipulating
3D Virtual Objects in Mobile Augmented Reality.
Multimedia Tools Appl 75, 23 (2016), 16529–16550.
DOI:http://dx.doi.org/10.1007/s11042-016-3355-9

[28] Johnny Lee. 2017. Mobile AR in Your Pocket With
Google Tango. SID Symposium Digest of Technical
Papers 48, 1 (2017), 17–18. DOI:
http://dx.doi.org/10.1002/sdtp.11563

[29] Timothy Lottes. 2011. Fast Approximation Antialiasing
(FXAA). NVIDIA Whitepaper (2011).

[30] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin
Matzen, and Johannes Kopf. 2020. Consistent Video
Depth Estimation. ACM Transactions on Graphics 39, 4
(2020). https://arxiv.org/abs/2004.15021

http://dx.doi.org/10.1109/ISWC.1997.629922
http://dx.doi.org/10.1145/358669.358692
https://dl.acm.org/doi/book/10.5555/1407436
http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1145/3290605.3300577
http://dx.doi.org/10.1145/1409240.1409266
http://dx.doi.org/10.1145/2207676.2208405
http://dx.doi.org/10.1016/S0097-8493(99)00103-X
http://dx.doi.org/10.1145/3272127.3275083
http://dx.doi.org/10.1007/s007790200030
http://dx.doi.org/10.1145/2047196.2047270
http://dx.doi.org/pdf/10.1145/2642918.2647383
http://dx.doi.org/10.1145/2468356.2479531
http://dx.doi.org/10.1109/IWAR.1999.803809
http://dx.doi.org/10.1145/2380116.2380139
http://dx.doi.org/10.1007/s11042-016-3355-9
http://dx.doi.org/10.1002/sdtp.11563
https://arxiv.org/abs/2004.15021

[31] Paweł Nowacki and Marek Woda. 2019. Capabilities of
ARCore and ARKit Platforms for AR/VR Applications.
In International Conference on Dependability and
Complex Systems. Springer, 358–370. DOI:
http://dx.doi.org/10.1007/978-3-030-19501-4_36

[32] Peter Ondrúška, Pushmeet Kohli, and Shahram Izadi.
2015. MobileFusion: Real-Time Volumetric Surface
Reconstruction and Dense Tracking on Mobile Phones.
IEEE Transactions on Visualization and Computer
Graphics 21, 11 (2015), 1251–1258. DOI:
http://dx.doi.org/10.1109/TVCG.2015.2459902

[33] Sergio Orts-Escolano, Christoph Rhemann, Sean
Fanello, Wayne Chang, Adarsh Kowdle, Yury
Degtyarev, David Kim, Philip L Davidson, Sameh
Khamis, Mingsong Dou, Vladimir Tankovich, Charles
Loop, Philip A.Chou, Sarah Mennicken, Julien Valentin,
Vivek Pradeep, Shenlong Wang, Sing Bing Kang,
Pushmeet Kohli, Yuliya Lutchyn, Cem Keskin, and
Shahram Izadi. 2016. Holoportation: Virtual 3D
Teleportation in Real-Time. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology (UIST). ACM, 741–754. DOI:
http://dx.doi.org/10.1145/2984511.2984517

[34] Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016.
Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann.
http://www.pbr-book.org

[35] Jing Qian, Jiaju Ma, Xiangyu Li, Benjamin Attal,
Haoming Lai, James Tompkin, John F. Hughes, and Jeff
Huang. 2019. Portal-Ble: Intuitive Free-Hand
Manipulation in Unbounded Smartphone-Based
Augmented Reality. In Proceedings of the 32Nd Annual
ACM Symposium on User Interface Software and
Technology (UIST ’19). ACM, 133–145. DOI:
http://dx.doi.org/10.1145/3332165.3347904

[36] Gerhard Reitmayr and Tom Drummond. 2006. Going
Out: Robust Model-Based Tracking for Outdoor
Augmented Reality. In Proceedings of the 5th IEEE and
ACM International Symposium on Mixed and
Augmented Reality (ISMAR ’06), Vol. 6. Washington,
DC, USA, 109–118. DOI:
http://dx.doi.org/10.1109/ISMAR.2006.297801

[37] Daniel Scharstein and Richard Szeliski. 2002. A
Taxonomy and Evaluation of Dense Two-Frame Stereo
Correspondence Algorithms. International Journal of
Computer Vision 47, 1-3 (2002), 7–42. DOI:
http://dx.doi.org/10.1109/SMBV.2001.988771

[38] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan
Taylor, Jamie Shotton, David Kim, Christoph Rhemann,
Ido Leichter, Alon Vinnikov, Yichen Wei, Daniel
Freedman, Pushmeet Kohli, Eyal Krupka, Andrew
Fitzgibbon, and Shahram Izadi. 2015. Accurate, Robust,
and Flexible Real-Time Hand Tracking. In Proceedings
of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (CHI ’15). ACM, 3633–3642.
DOI:http://dx.doi.org/10.1145/2702123.2702179

[39] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby
Sharp, Mark Finocchio, Richard Moore, Alex Kipman,
and Andrew Blake. 2011. Real-Time Human Pose
Recognition in Parts From Single Depth Images. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 1297–1304. DOI:
http://dx.doi.org/10.1109/CVPR.2011.5995316

[40] Rajinder S. Sodhi, Brett R. Jones, David Forsyth,
Brian P. Bailey, and Giuliano Maciocci. 2013. BeThere:
3D Mobile Collaboration With Spatial Input. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, ACM,
179–188. DOI:
http://dx.doi.org/10.1145/2470654.2470679

[41] Jie Song, Gábor Sörös, Fabrizio Pece, Sean Ryan
Fanello, Shahram Izadi, Cem Keskin, and Otmar
Hilliges. 2014. In-Air Gestures Around Unmodified
Mobile Devices. In Proceedings of the 27th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’14). ACM, 319–329. DOI:
http://dx.doi.org/10.1145/2642918.2647373

[42] Ivan E Sutherland. 1968. A Head-mounted Three
Dimensional Display. In Proceedings of the December
9-11, 1968, Fall Joint Computer Conference, Part I.
ACM, 757–764. DOI:
http://dx.doi.org/10.1145/1476589.1476686

[43] Jonathan Taylor, Lucas Bordeaux, Thomas Cashman,
Bob Corish, Cem Keskin, Toby Sharp, Eduardo Soto,
David Sweeney, Julien Valentin, Benjamin Luff, Arran
Topalian, Erroll Wood, Sameh Khamis, Pushmeet Kohli,
Shahram Izadi, Richard Banks, Andrew Fitzgibbon, and
Jamie Shotton. 2016. Efficient and Precise Interactive
Hand Tracking Through Joint, Continuous Optimization
of Pose and Correspondences. ACM Transactions on
Graphics (TOG) 35, 4 (2016), 1–12. DOI:
http://dx.doi.org/10.1145/2897824.2925965

[44] Bruce Thomas, Benjamin Close, John Donoghue, John
Squires, Phillip De Bondi, Michael Morris, and Wayne
Piekarski. 2000. ARQuake: an Outdoor/indoor
Augmented Reality First Person Application. In Digest
of Papers. Fourth International Symposium on Wearable
Computers. IEEE, IEEE, 139–146. DOI:
http://dx.doi.org/10.1109/ISWC.2000.888480

[45] Bruce Thomas, Wayne Piekarski, David Hepworth,
Bernard Gunther, and Victor Demczuk. 1998. A
Wearable Computer System With Augmented Reality to
Support Terrestrial Navigation. In Proceedings of the
2nd IEEE International Symposium on Wearable
Computers (ISWC ’98). IEEE, 168–171. DOI:
http://dx.doi.org/10.1109/ISWC.1998.729549

[46] Julien Valentin, Adarsh Kowdle, Jonathan T. Barron,
Neal Wadhwa, Max Dzitsiuk, Michael Schoenberg,
Vivek Verma, Ambrus Csaszar, Eric Turner, Ivan
Dryanovski, Joao Afonso, Jose Pascoal, Konstantine
Tsotsos, Mira Leung, Mirko Schmidt, Onur Guleryuz,
Sameh Khamis, Vladimir Tankovitch, Sean Fanello,

http://dx.doi.org/10.1007/978-3-030-19501-4_36
http://dx.doi.org/10.1109/TVCG.2015.2459902
http://dx.doi.org/10.1145/2984511.2984517
http://www.pbr-book.org
http://dx.doi.org/10.1145/3332165.3347904
http://dx.doi.org/10.1109/ISMAR.2006.297801
http://dx.doi.org/10.1109/SMBV.2001.988771
http://dx.doi.org/10.1145/2702123.2702179
http://dx.doi.org/10.1109/CVPR.2011.5995316
http://dx.doi.org/10.1145/2470654.2470679
http://dx.doi.org/10.1145/2642918.2647373
http://dx.doi.org/10.1145/1476589.1476686
http://dx.doi.org/10.1145/2897824.2925965
http://dx.doi.org/10.1109/ISWC.2000.888480
http://dx.doi.org/10.1109/ISWC.1998.729549

Shahram Izadi, and Christoph Rhemann. 2018. Depth
From Motion for Smartphone AR. ACM Transactions on
Graphics (TOG) 37, 6, Article 193 (2018), 193:1–193:19
pages. DOI:http://dx.doi.org/10.1145/3272127.3275041

[47] Julien Valentin, Vibhav Vineet, Ming-Ming Cheng,
David Kim, Jamie Shotton, Pushmeet Kohli, Matthias
Nießner, Antonio Criminisi, Shahram Izadi, and Philip
Torr. 2015. SemanticPaint: Interactive 3D Labeling and
Learning at Your Fingertips. ACM Transactions on
Graphics (TOG) 34, 5 (2015), 154. DOI:
http://dx.doi.org/10.1145/2751556

[48] Jonathan Ventura, Clemens Arth, Gerhard Reitmayr, and
Dieter Schmalstieg. 2014. Global Localization From
Monocular SLAM on a Mobile Phone. IEEE
Transactions on Visualization and Computer Graphics
20, 4 (2014), 531–539. DOI:
http://dx.doi.org/10.1109/TVCG.2014.27

[49] Lance Williams. 1978. Casting Curved Shadows on
Curved Surfaces. In Proceedings of the 5th Annual
Conference on Computer Graphics and Interactive
Techniques. 270–274. DOI:
http://dx.doi.org/10.1145/965139.807402

[50] Andrew Wilson, Hrvoje Benko, Shahram Izadi, and
Otmar Hilliges. 2012. Steerable Augmented Reality
with the Beamatron. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’12). ACM, 413–422. DOI:
http://dx.doi.org/10.1145/2380116.2380169

[51] Andrew D. Wilson and Hrvoje Benko. 2010. Combining
Multiple Depth Cameras and Projectors for Interactions
on, above and between Surfaces. In Proceedings of the
23nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’10). ACM, 273–282.
DOI:http://dx.doi.org/10.1145/1866029.1866073

[52] Chi-Jui Wu, Steven Houben, and Nicolai Marquardt.
2017. EagleSense: Tracking People and Devices in

Interactive Spaces Using Real-Time Top-View
Depth-Sensing. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, 3929–3942. DOI:
http://dx.doi.org/10.1145/3025453.3025562

[53] Robert Xiao, Scott Hudson, and Chris Harrison. 2016.
DIRECT: Making Touch Tracking on Ordinary Surfaces
Practical With Hybrid Depth-Infrared Sensing. In
Proceedings of the 2016 ACM International Conference
on Interactive Surfaces and Spaces. ACM, ACM, 85–94.
DOI:http://dx.doi.org/10.1145/2992154.2992173

[54] Robert Xiao, Julia Schwarz, Nick Throm, Andrew D
Wilson, and Hrvoje Benko. 2018. MRTouch: Adding
Touch Input to Head-Mounted Mixed Reality. IEEE
Transactions on Visualization and Computer Graphics
24, 4 (2018), 1653–1660. DOI:
http://dx.doi.org/10.1109/TVCG.2018.2794222

[55] Jackie Yang, Christian Holz, Eyal Ofek, and Andrew D
Wilson. 2019. Dreamwalker: Substituting real-world
walking experiences with a virtual reality. In
Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology. 1093–1107.
DOI:http://dx.doi.org/10.1145/3332165.3347875

[56] Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu.
2020. ARAnimator: In-situ Character Animation in
Mobile AR with User-defined Motion Gestures. ACM
Transactions on Graphics (TOG) 39, 4 (2020), 83. DOI:
http://dx.doi.org/10.1145/3386569.3392404

[57] Tao Yu, Kaiwen Guo, Feng Xu, Yuan Dong, Zhaoqi Su,
Jianhui Zhao, Jianguo Li, Qionghai Dai, and Yebin Liu.
2017. BodyFusion: Real-Time Capture of Human
Motion and Surface Geometry Using a Single Depth
Camera. In Proceedings of the IEEE International
Conference on Computer Vision. ACM, 910–919. DOI:
http://dx.doi.org/10.1109/ICCV.2017.104

http://dx.doi.org/10.1145/3272127.3275041
http://dx.doi.org/10.1145/2751556
http://dx.doi.org/10.1109/TVCG.2014.27
http://dx.doi.org/10.1145/965139.807402
http://dx.doi.org/10.1145/2380116.2380169
http://dx.doi.org/10.1145/1866029.1866073
http://dx.doi.org/10.1145/3025453.3025562
http://dx.doi.org/10.1145/2992154.2992173
http://dx.doi.org/10.1109/TVCG.2018.2794222
http://dx.doi.org/10.1145/3332165.3347875
http://dx.doi.org/10.1145/3386569.3392404
http://dx.doi.org/10.1109/ICCV.2017.104

	Introduction
	Related Work
	Mobile AR Capabilities
	Depth-based Libraries and Use Cases
	AR for Head-Mounted Displays

	System Scope and Overview
	Geometry-Aware AR Features Elicitation
	System Architecture
	Tracking and Input
	Data Structures of DepthLab
	Conversion Utilities and Algorithm

	Algorithms and Implementation
	Interaction With Localized Depth
	Screen-space to/from World-space Conversion
	Computing Normal Vectors
	Collision-aware Placement
	Avatar Path Planning
	Other Use Cases

	Interaction With Surface Depth
	Real-time Depth Mesh
	Tri-planar texture mapping
	Virtual Shadows
	Physics Collisions
	Decals and Splats

	Interaction with Dense Depth
	Anti-aliasing
	Relighting
	3D-anchored Aperture Effect
	Occlusion

	Discussions
	Interaction with Depth Maps vs. Reconstructed Meshes
	Performance Evaluation
	DepthLab as a Reusable Library for Depth Rendering and Interaction

	Limitations
	Conclusion and Future Work
	Acknowledgement
	References

