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6 Supplementary Material

6.1 Training Setup

Optimization. In all of our experiments, we train the MLPs in PyTorch using
the Adam optimizer with the default parameters. We supervise the network
based on the mean squared error loss between reconstructed color and ground
truth color. We adopt the cosine annealing learning rate scheduler, with initial
learning rate as 10~% and final learning rate as 10~7. We randomly shuffled all
the training samples and divided them into batches of size equal to 1,024. To
ensure reproducibility, we set the random seed as 0.

On a machine with NVIDIA GeForce RTX 2080 TI, training 10 epochs takes
around 4 minutes for the SDF and OF condition, and 13 minutes for PRIF.

Network Architecture. We set all networks to have 10 layers with residual
connections, where the 8 intermediate layers having a dimension size of 512 x512.
We apply layer normalization after all MLP layers except the final one. When
we further extend the network to model color or background mask, we simply
invoke a second network with the same architecture, as network compression
rate or total parameter count is not the main focus of the current work.

6.2 Runtime Discussions

Rendering Speed. The formulation of PRIF inherently allows us to bypass
the inefficient multi-sample issue of the previous methods that adopt level-set
functional representations. To more quantitatively measure the speed-up, we
measure the number of network evaluations (Queries) and the actual time to
render a 512 x 512 depth image from a trained neural representation on the same
machine with an NVIDIA GeForce RTX 2080 Ti graphics card. We first consider

Method Steps Queries Time (s)

DeepSDF + Sphere Tracing 100 2,453,700 1.01070
DeepSDF + DIST Acceleration 100 382,325 0.30539
PRIF 1 262,144 0.00578

Table 4: Quantitative results on the cost to render a 512 x 512 depth image from
trained neural shape representations. Queries refer to the number of network
evaluations, and Steps refer to the maximum sphere tracing steps specified in
the actual implementation. Steps = 100 is in line with the original DIST imple-
mentation from Liu et al. [28].

a baseline method where a trained DeepSDF network is used to perform naive
sphere tracing. We then consider an improved baseline where the DeepSDF-based



20 B. Feng et al.

sphere tracing is sped up by various techniques proposed by Liu et al. [28]. Both
baselines are adopted from the implementation of Liu et al., and correspond to
two conditions (trivial and recursive) in their implementation.

Meshing Speed The overall meshing speed depends on network inference +
surface reconstruction. We examine the trade-off by decoding the same shape
with PRIF and SDF trained with networks of equivalent capacity. Our method
spends 1.01s at inference, then 2.65s to obtain the triangle mesh from MeshLab
(Poisson with normal estimation). The SDF-based network (similar to DeepSDF)
spends 6.97s for inference, then 1.19s for Marching Cubes. We also note that
many practical scenarios do not require the meshing process, such as camera
pose registration and neural rendering.

6.3 More Ablations

Comparison to Pliicker Coordinate. We use the original Pliicker coordinate
for the shape generation task for the Car category. Below are the results (with
mean/median Chamfer distance):

Method Car Chair Table Plane Lamp Sofa

Plain Pliicker 2.397|0.547 2.603|0.531 5.054|0.554 0.766]0.199 4.838|1.094 1.738|0.305
Proposed 1.961]0.347 0.982|0.267 4.532|0.315 0.389|0.125 3.276|0.534 1.236|0.222

Although the plain Pliicker formulation works well for single shape represen-
tation (Section 5 Table 3), it performs much worse in the generative task. We
find the network trained with Pliicker coordinates often fails to predict correct
background masks, leading to many noisy points and worse performance overall.
Compared to the Pliicker moment vector, our proposed reference points is better
geometrically related to the surface hitpoint, which is our overarching goal of
shape representation and rendering.

Varying Model complexity. We examine the effect of varying the model
capacity (by changing MLP layer width) for the generation task on shapes from
the Car category.

# Param (in Millions) 2.96 2.23 1.58 1.35 ‘SDF (2.10)
Mean|Median CD  1.961(0.347 2.026|0.364 2.058|0.368 24055\0.386‘2.315\0.495

Results show we can decrease the number of parameters and still achieve better
performance than SDF.
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Different Noise Levels. We perform additional denoising experiments (as
Fig. 5 in the paper) and present the impact of different noise levels on the shape
representation accuracy on the Car category (measured by Chamfer distance):

Noise Level 0.01 0.02 0.04 0.08 0.1
Mean|Median CD 1.929]0.368 1.931]0.428 2.005]0.590 2.471|0.951 2.842|1.123

6.4 Additional Results
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Fig.11: More Single Shape from Different Angles. Results from Rows 1
to 4 correspond to Reference, OF, SDF, PRIF - Mesh.
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Fig.12: More Single Shape from Different Angles. Results from Rows 1
to 4 correspond to Reference, OF, SDF, PRIF - Mesh.
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Fig.13: More Single Shape from Different Angles. Results from Rows 1
to 4 correspond to Reference, OF, SDF, PRIF - Mesh.
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Fig.14: More Single Shape from Different Angles. Results from Rows 1
to 4 correspond to Reference, OF, SDF, PRIF - Mesh.



PRIF: Primary Ray-based Implicit Function 25

sk L A g
A< A= 2

Fig.15: More Single Shape from Different Angles. Results from Rows 1
to 4 correspond to Reference, OF, SDF, PRIF - Mesh.
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Fig. 16: More Generative Results from Different Categories. Results from
Rows 1 to 4 correspond to Reference, OF, SDF, PRIF - Mesh.
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Fig.17: More Generative Results from Different Categories. Results from
Rows 1 to 4 correspond to Reference, OF, SDF, PRIF - Mesh.
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Fig. 18: More Generative Results from Different Categories. Results from
Rows 1 to 4 correspond to Reference, OF, SDF, PRIF - Mesh.
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Fig.19: More Generative Results from Different Categories. Results from
Rows 1 to 4 correspond to Reference, OF, SDF, PRIF - Mesh.
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Fig.20: More Generative Results from Different Categories. Results from
Rows 1 to 4 correspond to Reference, OF, SDF, PRIF - Mesh.
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Fig.21: More Generative Results from Different Categories. Results from
Rows 1 to 4 correspond to Reference, OF, SDF, PRIF - Mesh.

pa—
p—
N



32 B. Feng et al.

Fig.22: More Color Rendering Results. Depth (left) and Color (right) ren-
derings from the same view point are shown.
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Fig.23: More Color Rendering. Depth (left) and Color (right) renderings
from the same view point are shown.




