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Figure 1: Visual Blocks for ML is a rapid visual prototyping system that allows users to build and share ML pipelines. In this
example, the user builds a real-time pipeline that depicts an AR sticker on the user’ head with a virtual background.

ABSTRACT
We demonstrate Visual Blocks for ML, a visual programming plat-
form that facilitates rapid prototyping of ML-based multimedia
applications. As the public version of Rapsai [3], we further in-
tegrated large language models and custom APIs into the plat-
form. In this demonstration, we will showcase how to build in-
teractive AI pipelines in a few drag-and-drops, how to perform
interactive data augmentation, and how to integrate pipelines into
Colabs. In addition, we demonstrate a wide range of community-
contributed pipelines in Visual Blocks for ML, covering various
aspects including interactive graphics, chains of large language
models, computer vision, and multi-modal applications. Finally, we
encourage students, designers, and ML practitioners to contribute
ML pipelines through https://github.com/google/visualblocks/tree/
main/pipelines to inspire creative use cases. Visual Blocks for ML
is available at http://visualblocks.withgoogle.com.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’23 Adjunct, October 29-November 1, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0096-5/23/10.
https://doi.org/10.1145/3586182.3615817

CCS CONCEPTS
• Computing methodologies→ Visual analytics; Machine learn-
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1 INTRODUCTION
Although user-friendly tools for developing machine learning (ML)
models in language [2, 7–9] and image classification [1, 4–6] have
become readily available, there remains a significant gap in tools
supporting real-time multimedia applications. The current tools are
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inadequate in efficiently handling visual and audio data from real-
world sources, such as camera streams, and fail to enable interactive
experimentation with data augmentation and model comparison.

Furthermore, developing and iterating on these ML-based multi-
media prototypes can be challenging and costly. It usually involves
a cross-functional team of ML practitioners who fine-tune the mod-
els, evaluate robustness, characterize strengths and weaknesses,
inspect performance in the end-use context, and develop the ap-
plications. Moreover, models are frequently updated and require
repeated integration efforts before evaluation can occur, which
makes the workflow ill-suited to design and experiment.

In this demonstration paper, we present Visual Blocks for ML, an
iterated system and public version of Rapsai [3]. Visual Blocks for
ML uses a node-graph editor that facilitates rapid prototyping of
ML-basedmultimedia applications. Users can create and connect dif-
ferent components (nodes) to rapidly build an ML pipeline, and see
the results in real-time without writing any code. We demonstrate
how this platform enables a better model evaluation experience
through interactive characterization and visualization of ML model
performance and interactive data augmentation and comparison.
We have released the Visual Blocks for ML framework, along with
a demo and Colab examples 1.

2 SYSTEM OVERVIEW
We iteratively developed Visual Blocks for ML on the base of Rap-
sai [3], a web-based rapid prototyping platform we built where
researchers and developers can quickly build and deploy multime-
dia pipelines. In additional to the initial version, we added support
of large language models, multi-modal models, and custom APIs to
facilitate creating more diverse and creative pipelines.

2.1 Visual Blocks for ML
As shown in Figure 1, Visual Blocks for ML consists of three coor-
dinated panels: (a) Preview Panel, (b) Nodes Library, and (c) Node-
graph Editor. The preview panel depicts visible nodes, where users
could upload images, change input text, and preview intermediate
steps. The nodes library categorizes 38 available nodes into input,
effects, output, model, tensor, andmisc nodes. Taking feedback from
[3], we integrate node parameters within the node-graph editor, so
that users could interactive augment data, change parameters in an
intuitive way.

2.2 Visual Blocks for ML Colaboratory
Visual Blocks for ML also supports Google Colab2. On the Colab,
the user can easily customized their node and serve their web-page
on the web interface. The Colab will automatically render the Visual
Blocks for ML interface for creative uses.

2.3 Use Cases and Scenarios
The major use scenarios of Visual Blocks for ML can be categorized
by the types of ML pipeline made by the user.

Language Pipelines: Our community users have built various
language-based pipeline, including “email tone explorer”, “weather
1Visual Blocks for ML: http://visualblocks.withgoogle.com
2Visual Blocks Quick Start for Colab: https://colab.research.google.com/github/google/
visualblocks/blob/main/examples/quick_start_cartoonization.ipynb

summarizer” and even the interactions in the were-wolf game, a
role-playing board game, using LLMs as artificial agents.

Vision Pipelines: With Visual Blocks for ML, developers can
interactively evaluate the robustness of their computer vision mod-
els. For example, the user can add an image processor before an
object detection model to test whether the detection can be robust
to various lighting conditions.

Multi-modal Pipelines: We have incorporated text-to-image
generative models (i.e., Imagen) and PaLM 2, a multi-modal LLMs,
into Visual Blocks for ML. The user can easily build a visual caption-
ing tool to enhance accessibility and a draft-to-HTML to support
creative processes.

3 CONCLUSION
In this demonstration, we presented Visual Blocks for ML, a system
designed to lowers development barriers for ML-based multimedia
applications. It empowers users to experiment without worrying
about coding or technical details. It also facilitates collaboration
between designers and developers by providing a common language
for describing ML pipelines. In the future, we plan to open this
framework up for the community to contribute their own nodes
and integrate it into many different platforms. We expect visual
programming for machine learning to be a common interface across
ML tooling going forward.
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